Schrödinger Logics

Studia Logica 53 (4) (1994)

Authors
Décio Krause
Federal University of Santa Catarina
Abstract
Schrödinger logics are logical systems in which the principle of identity is not true in general. The intuitive motivation for these logics is both Erwin Schrödinger's thesis (which has been advanced by other authors) that identity lacks sense for elementary particles of modern physics, and the way which physicists deal with this concept; normally, they understandidentity as meaningindistinguishability (agreemment with respect to attributes). Observing that these concepts are equivalent in classical logic and mathematics, which underly the usual physical theories, we present a higher-order logical system in which these concepts are systematically separated. A classical semantics for the system is presented and some philosophical related questions are mentioned. One of the main characteristics of our system is that Leibniz' Principle of the Identity of Indiscernibles cannot be derived. This fact is in accordance with some authors who maintain that quantum mechanics violates this principle. Furthermore, our system may be viewed as a way of making sense some of Schrödinger's logical intuitions about the nature of elementary particles.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 62,205
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
36 ( #298,165 of 2,444,728 )

Recent downloads (6 months)
1 ( #457,256 of 2,444,728 )

How can I increase my downloads?

Downloads

My notes