About a decade ago the concept of chaos burst upon scientific community as a new paradigm for viewing the certain of the workings of nature and the structures of mathematics. It embodied two key concepts: (1) that certain systems that are classified as "chaotic", while completely determined by initial conditions and the laws of physics, are nevertheless so unstable as to be inherently unpredictable; and (2) that the behavior of chaotic systems is not arbitrarily random, but instead shows regularities, repeating patterns, and self-similarities. The new science of chaos thus staked out its territory in the middle ground between order and randomness, a ground that in the real world is occupied by systems ranging from energy levels in nuclei, to turbulence in plasmas, to the spread of gypsy moths, to weather patterns of Earth and Jupiter, to the stock and commodities markets
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 59,864
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
12 ( #768,449 of 2,433,125 )

Recent downloads (6 months)
1 ( #463,753 of 2,433,125 )

How can I increase my downloads?


My notes