Cross domain inference and problem embedding
Abstract
I.1. Two reasons for studying inference. Inference is studied for two distinct reasons: for its bearing on justification and for its bearing on learning. By and large, philosophy has focused on the role of inference in justification, leaving its role in learning to psychology and artificial intelligence. This difference of role leads to a difference of conception. An inference based theory of learning does not require a conception of inference according to which a good inference is one that justifies its conclusion, whereas, obviously, an inference based theory of justification does require such a conception.1 Because of its focus on normative issues of justification, philosophy has taken a retrospective approach to inference, whereas a focus on learning naturally leads to a prospective approach. A focus on learning leads us to ask, "Given what is known, what should be inferred? How can what is known lead, via inference, to new knowledge?" A focus on justification has led philosophers to concentrate instead on a retrospective question: "Given a belief, can it be validly inferred from what is known? How can what is known justify, via inference, a new belief?" Thus, for philosophy, inference can be regarded as permissive: one needn't worry about what to infer, only about whether what has been arrived at somehow or other is or can be inferentially justified. A theory of learning, on the other hand, requires a conception of inference that is directive, for the problem of inference based learning is precisely the problem of what to infer.