A general theorem on termination of rewriting

Abstract
We re-express our theorem on the strong-normalisation of display calculi as a theorem about the well-foundedness of a certain ordering on first-order terms, thereby allowing us to prove the termination of systems of rewrite rules. We first show how to use our theorem to prove the well-foundedness of the lexicographic ordering, the multiset ordering and the recursive path ordering. Next, we give examples of systems of rewrite rules which cannot be handled by these methods but which can be handled by ours. Finally, we show that our method can also prove the termination of the Knuth-Bendix ordering and of dependency pairs. Keywords: rewriting, termination, well-founded ordering, recursive path ordering..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 33,777
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total downloads
4 ( #741,602 of 2,263,264 )

Recent downloads (6 months)
1 ( #378,621 of 2,263,264 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature