Archive for Mathematical Logic 32 (2):113-135 (1992)

Abstract
In this paper we investigate problems about densities ofe-generic,s-generic andp-generic degrees. We, in particular, show that allp-generic degrees are non-branching, which answers an open question by Jockusch who asked: whether alls-generic degrees are non-branching and refutes a conjecture of Ingrassia; the set of degrees containing r.e.p-generic sets is the same as the set of r.e. degrees containing an r.e. non-autoreducible set
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF01269953
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 57,138
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Recursively Enumerable Generic Sets.Wolfgang Maass - 1982 - Journal of Symbolic Logic 47 (4):809-823.
The Density of the Nonbranching Degrees.Peter A. Fejer - 1983 - Annals of Pure and Applied Logic 24 (2):113-130.
Completely Mitotic R.E. Degrees.R. G. Downey & T. A. Slaman - 1989 - Annals of Pure and Applied Logic 41 (2):119-152.
The Density of Infima in the Recursively Enumerable Degrees.Theodore A. Slaman - 1991 - Annals of Pure and Applied Logic 52 (1-2):155-179.

View all 6 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Complementation in the Turing Degrees.Theodore A. Slaman & John R. Steel - 1989 - Journal of Symbolic Logic 54 (1):160-176.
Recursively Enumerable Generic Sets.Wolfgang Maass - 1982 - Journal of Symbolic Logic 47 (4):809-823.
The Degrees Below a 1-Generic Degree $.Christine Ann Haught - 1986 - Journal of Symbolic Logic 51 (3):770 - 777.
Jump Operator and Yates Degrees.Guohua Wu - 2006 - Journal of Symbolic Logic 71 (1):252 - 264.
The Isolated D. R. E. Degrees Are Dense in the R. E. Degrees.Geoffrey Laforte - 1996 - Mathematical Logic Quarterly 42 (1):83-103.
Bounding Non- GL ₂ and R.E.A.Klaus Ambos-Spies, Decheng Ding, Wei Wang & Liang Yu - 2009 - Journal of Symbolic Logic 74 (3):989-1000.
Relative Enumerability and 1-Genericity.Wei Wang - 2011 - Journal of Symbolic Logic 76 (3):897 - 913.
Minimal Degrees Recursive in 1-Generic Degrees.C. T. Chong & R. G. Downey - 1990 - Annals of Pure and Applied Logic 48 (3):215-225.
1-Generic Degrees and Minimal Degrees in Higher Recursion Theory, II.C. T. Chong - 1986 - Annals of Pure and Applied Logic 31:165-175.
1-Generic Splittings of Computably Enumerable Degrees.Guohua Wu - 2006 - Annals of Pure and Applied Logic 138 (1):211-219.

Analytics

Added to PP index
2013-11-23

Total views
22 ( #471,648 of 2,411,664 )

Recent downloads (6 months)
1 ( #539,172 of 2,411,664 )

How can I increase my downloads?

Downloads

My notes