Isols and the pigeonhole principle

Journal of Symbolic Logic 54 (3):833-846 (1989)
Abstract
In this paper we generalize the pigeonhole principle by using isols as our fundamental counting tool
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2274745
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,749
Through your library
References found in this work BETA
Recursion Relative to Regressive Functions.J. C. E. Dekker & E. Ellentuck - 1974 - Annals of Mathematical Logic 6 (3-4):231-257.
A Stronger Definition of a Recursively Infinite Set.Charles H. Applebaum - 1973 - Notre Dame Journal of Formal Logic 14 (3):411-412.

Add more references

Citations of this work BETA
Myhill's Work in Recursion Theory.J. C. E. Dekker & E. Ellentuck - 1992 - Annals of Pure and Applied Logic 56 (1-3):43-71.

Add more citations

Similar books and articles
Markov's Principle, Isols and Dedekind Finite Sets.Charles McCarty - 1988 - Journal of Symbolic Logic 53 (4):1042-1069.
A Δ02 Theory of Regressive Isols.Erik Ellentuck - 1974 - Journal of Symbolic Logic 39 (3):459 - 468.
Hyper-Torre Isols.Erik Ellentuck - 1981 - Journal of Symbolic Logic 46 (1):1-5.
An Algebraic Difference Between Isols and Cosimple Isols.Erik Ellentuck - 1972 - Journal of Symbolic Logic 37 (3):557-561.
Added to PP index
2009-01-28

Total downloads
12 ( #389,427 of 2,198,092 )

Recent downloads (6 months)
1 ( #299,438 of 2,198,092 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature