Symmetry 9 (10) (2017)

© 2017 by the authors. Aristotelian diagrams visualize the logical relations among a finite set of objects. These diagrams originated in philosophy, but recently, they have also been used extensively in artificial intelligence, in order to study various knowledge representation formalisms. In this paper, we develop the idea that Aristotelian diagrams can be fruitfully studied as geometrical entities. In particular, we focus on four polyhedral Aristotelian diagrams for the Boolean algebra B4, viz. the rhombic dodecahedron, the tetrakis hexahedron, the tetraicosahedron and the nested tetrahedron. After an in-depth investigation of the geometrical properties and interrelationships of these polyhedral diagrams, we analyze the correlation between logical and geometrical distance in each of these diagrams. The outcome of this analysis is that the Aristotelian rhombic dodecahedron and tetrakis hexahedron exhibit the strongest degree of correlation between logical and geometrical distance; the tetraicosahedron performs worse; and the nested tetrahedron has the lowest degree of correlation. Finally, these results are used to shed new light on the relative strengths and weaknesses of these polyhedral Aristotelian diagrams, by appealing to the congruence principle from cognitive research on diagram design.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 65,811
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Visualising the Boolean Algebra B_4 in 3D.Hans5 Smessaert & Lorenz6 Demey - 2016 - Diagrammatic Representation and Inference, Diagrams 9781:289 - 292.
The Interaction Between Logic and Geometry in Aristotelian Diagrams.Lorenz6 Demey & Hans5 Smessaert - 2016 - Diagrammatic Representation and Inference, Diagrams 9781:67 - 82.
Metalogical Decorations of Logical Diagrams.Lorenz6 Demey & Hans5 Smessaert - 2016 - Logica Universalis 10 (2-3):233-292.
Peirce and the Logical Status of Diagrams.Sun-Joo Shin - 1994 - History and Philosophy of Logic 15 (1):45-68.
Logical Geometries and Information in the Square of Oppositions.Hans5 Smessaert & Lorenz6 Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
Between Square and Hexagon in Oresme's Livre du Ciel Et du Monde.Lorenz Demey - 2019 - History and Philosophy of Logic 41 (1):36-47.
Diagrams, Logic and Representation.Eric Morgan Hammer - 1995 - Dissertation, Indiana University
Visualizations of the Square of Opposition.Peter Bernhard - 2008 - Logica Universalis 2 (1):31-41.
Diagrams as Sketches.Brice Halimi - 2012 - Synthese 186 (1):387-409.


Added to PP index

Total views
2 ( #1,423,734 of 2,463,235 )

Recent downloads (6 months)
1 ( #449,456 of 2,463,235 )

How can I increase my downloads?


My notes