Objectivity and Rigor in Classical Italian Algebraic Geometry

Noesis 38:195-212 (2022)
  Copy   BIBTEX


The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th-century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive conception of rigor and intuition. Unlike what is often assumed today, from their perspective, rigor is neither opposed to intuition nor understood as a unitary phenomenon – Enriques distinguishes between small-scale rigor and large-scale rigor and Severi between formal rigor and substantial rigor. Finally, we turn to the notion of mathematical objectivity. We draw from our case study in order to advance a multi-dimensional analysis of objectivity. Specifically, we suggest that various types of rigor may be associated with different conceptions of objectivity: namely, objectivity as faithfulness to facts and objectivity as intersubjectivity.



External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Geometry of *-finite types.Ludomir Newelski - 1999 - Journal of Symbolic Logic 64 (4):1375-1395.
Geometry of *-Finite Types.Ludomir Newelski - 1999 - Journal of Symbolic Logic 64 (4):1375-1395.
Algebraic Kripke-Style Semantics for Relevance Logics.Eunsuk Yang - 2014 - Journal of Philosophical Logic 43 (4):803-826.
Algebraic semantics for deductive systems.W. J. Blok & J. Rebagliato - 2003 - Studia Logica 74 (1-2):153 - 180.
Algebraic Semantics for Deductive Systems.W. Blok & J. Rebagliato - 2003 - Studia Logica 74 (1-2):153-180.
Ideal Elements in Hilbert's Geometry.John Stillwell - 2014 - Perspectives on Science 22 (1):35-55.
Equivalential logics.Janusz Czelakowski - 1980 - Bulletin of the Section of Logic 9 (3):108-113.


Added to PP

261 (#78,081)

6 months
126 (#30,667)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Silvia De Toffoli
University School of Advanced Studies IUSS Pavia

References found in this work

Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
Intentional gaps in mathematical proofs.Don Fallis - 2003 - Synthese 134 (1-2):45 - 69.

Add more references