Model completeness for trivial, uncountably categorical theories of Morley rank 1
Archive for Mathematical Logic 45 (8):931-945 (2006)
Abstract
We show that if T is a trivial uncountably categorical theory of Morley Rank 1 then T is model complete after naming constants for a modelDOI
10.1007/s00153-006-0019-x
My notes
Similar books and articles
The geometry of forking and groups of finite Morley rank.Anand Pillay - 1995 - Journal of Symbolic Logic 60 (4):1251-1259.
Supersimple ω-categorical groups and theories.David M. Evans & Frank O. Wagner - 2000 - Journal of Symbolic Logic 65 (2):767-776.
Morley Rank in Homogeneous Models.Alexei Kolesnikov & G. V. N. G. Krishnamurthi - 2006 - Notre Dame Journal of Formal Logic 47 (3):319-329.
Tiny models of categorical theories.M. C. Laskowski, A. Pillay & P. Rothmaler - 1992 - Archive for Mathematical Logic 31 (6):385-396.
K‐generic Projective Planes have Morley Rank Two or Infinity.John T. Baldwin & Masanori Itai - 1994 - Mathematical Logic Quarterly 40 (2):143-152.
On the number of models of uncountable theories.Ambar Chowdhury & Anand Pillay - 1994 - Journal of Symbolic Logic 59 (4):1285-1300.
Constructing ω-stable Structures: Rank k-fields.John T. Baldwin & Kitty Holland - 2003 - Notre Dame Journal of Formal Logic 44 (3):139-147.
Actions of groups of finite Morley rank on small abelian groups.Adrien Deloro - 2009 - Bulletin of Symbolic Logic 15 (1):70-90.
Bad groups of finite Morley rank.Luis Jaime Corredor - 1989 - Journal of Symbolic Logic 54 (3):768-773.
Some results on permutation group isomorphism and categoricity.Anand Pillay & Mark D. Schlatter - 2002 - Journal of Symbolic Logic 67 (3):910-914.
Full frobenius groups of finite Morley rank and the Feit-Thompson theorem.Eric Jaligot - 2001 - Bulletin of Symbolic Logic 7 (3):315-328.
Analytics
Added to PP
2013-11-23
Downloads
76 (#161,218)
6 months
4 (#184,465)
2013-11-23
Downloads
76 (#161,218)
6 months
4 (#184,465)
Historical graph of downloads
Citations of this work
Uniformly Bounded Arrays and Mutually Algebraic Structures.Michael C. Laskowski & Caroline A. Terry - 2020 - Notre Dame Journal of Formal Logic 61 (2):265-282.
Mutually algebraic structures and expansions by predicates.Michael C. Laskowski - 2013 - Journal of Symbolic Logic 78 (1):185-194.
The elementary diagram of a trivial, weakly minimal structure is near model complete.Michael C. Laskowski - 2009 - Archive for Mathematical Logic 48 (1):15-24.
Preface.Douglas Cenzer, Valentina Harizanov, David Marker & Carol Wood - 2009 - Archive for Mathematical Logic 48 (1):1-6.
Characterizing Model Completeness Among Mutually Algebraic Structures.Michael C. Laskowski - 2015 - Notre Dame Journal of Formal Logic 56 (3):463-470.
References found in this work
Non Σn axiomatizable almost strongly minimal theories.David Marker - 1989 - Journal of Symbolic Logic 54 (3):921 - 927.