A variant of Mathias forcing that preserves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document} [Book Review]

Archive for Mathematical Logic 51 (7-8):751-780 (2012)
  Copy   BIBTEX

Abstract

We present and analyze \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_\sigma}$$\end{document}-Mathias forcing, which is similar but tamer than Mathias forcing. In particular, we show that this forcing preserves certain weak subsystems of second-order arithmetic such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WKL}_0 + \mathsf{I}\Sigma^0_2}$$\end{document}, whereas Mathias forcing does not. We also show that the needed reals for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_\sigma}$$\end{document}-Mathias forcing (in the sense of Blass in Ann Pure Appl Logic 109(1–2):77–88, 2001) are just the computable reals, as opposed to the hyperarithmetic reals for Mathias forcing.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,038

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A Nonstandard Counterpart of WWKL.Stephen G. Simpson & Keita Yokoyama - 2011 - Notre Dame Journal of Formal Logic 52 (3):229-243.
Forcing and stable ordered–union ultrafilters.Todd Eisworth - 2002 - Journal of Symbolic Logic 67 (1):449-464.
Mathias absoluteness and the Ramsey property.Lorenz Halbeisen & Haim Judah - 1996 - Journal of Symbolic Logic 61 (1):177-194.
Fragile measurability.Joel Hamkins - 1994 - Journal of Symbolic Logic 59 (1):262-282.
On iterating semiproper preorders.Tadatoshi Miyamoto - 2002 - Journal of Symbolic Logic 67 (4):1431-1468.
Canonical seeds and Prikry trees.Joel David Hamkins - 1997 - Journal of Symbolic Logic 62 (2):373-396.
Small forcing makes any cardinal superdestructible.Joel David Hamkins - 1998 - Journal of Symbolic Logic 63 (1):51-58.
The independence of δ1n.Amir Leshem & Menachem Magidor - 1999 - Journal of Symbolic Logic 64 (1):350 - 362.
Forcing Indestructibility of Set-Theoretic Axioms.Bernhard König - 2007 - Journal of Symbolic Logic 72 (1):349 - 360.
Souslin forcing.Jaime I. Ihoda & Saharon Shelah - 1988 - Journal of Symbolic Logic 53 (4):1188-1207.

Analytics

Added to PP
2013-10-27

Downloads
39 (#409,087)

6 months
10 (#269,219)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Partition Genericity and Pigeonhole Basis Theorems.Benoit Monin & Ludovic Patey - forthcoming - Journal of Symbolic Logic:1-29.

Add more citations

References found in this work

On the Strength of Ramsey's Theorem.David Seetapun & Theodore A. Slaman - 1995 - Notre Dame Journal of Formal Logic 36 (4):570-582.
A new proof that analytic sets are Ramsey.Erik Ellentuck - 1974 - Journal of Symbolic Logic 39 (1):163-165.
Ramsey's Theorem and Cone Avoidance.Damir D. Dzhafarov & Carl G. Jockusch - 2009 - Journal of Symbolic Logic 74 (2):557-578.

View all 7 references / Add more references