Learning and exploiting context in agents

The use of context can considerably facilitate reasoning by restricting the beliefs reasoned upon to those relevant and providing extra information specific to the context. Despite the use and formalization of context being extensively studied both in AI and ML, context has not been much utilized in agents. This may be because many agents are only applied in a single context, and so these aspects are implicit in their design, or it may be that the need to explicitly encode information about various contexts is onerous. An algorithm to learn the appropriate context along with knowledge relevant to that context gets around these difficulties and opens the way for the exploitation of context in agent design. The algorithm is described and the agents compared with agents that learn and apply knowledge in a generic way within an artificial stock market. The potential for context as a principled manner of closely integrating crisp reasoning and fuzzy learning is discussed.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 39,711
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Complexity and Context-Dependency.Bruce Edmonds - 2013 - Foundations of Science 18 (4):745-755.

Add more citations

Similar books and articles


Added to PP index

Total views
19 ( #401,716 of 2,328,131 )

Recent downloads (6 months)
1 ( #950,624 of 2,328,131 )

How can I increase my downloads?


My notes

Sign in to use this feature