Glass Classification Using Artificial Neural Network

International Journal of Academic Pedagogical Research (IJAPR) 3 (23):25-31 (2019)
  Copy   BIBTEX

Abstract

As a type of evidence glass can be very useful contact trace material in a wide range of offences including burglaries and robberies, hit-and-run accidents, murders, assaults, ram-raids, criminal damage and thefts of and from motor vehicles. All of that offer the potential for glass fragments to be transferred from anything made of glass which breaks, to whoever or whatever was responsible. Variation in manufacture of glass allows considerable discrimination even with tiny fragments. In this study, we worked glass classification and testing of artificial neural network model created by the JustNN. The aim of the study is help investigator in identifying the type of glass found in arena of the crime. The Neural Network model was trained and validated using the type of glass dataset. The accuracy of model in predicting the type of glass reached 96.7%. Thus neural network is suitable for predicating type of glasses.

Other Versions

No versions found

Links

PhilArchive

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

ANN for Predicting Antibiotic Susceptibility.Maaruf Ahmed & Qassas Randa - 2016 - International Journal of Academic Pedagogical Research (IJAPR) 10 (2):1-4.
Rice Classification using ANN.Abdulrahman Muin Saad & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):32-42.
Spin-glass in the spinel-type CuCrTiS4.Shoichi Nagata, Naoto Koseki & Shuji Ebisu - 2012 - Philosophical Magazine 92 (23):2957-2969.
Predicting Tumor Category Using Artificial Neural Networks.Ibrahim M. Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (2):1-7.
Predicting Birth Weight Using Artificial Neural Network.Mohammed Al-Shawwa & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):9-14.
Diabetes Prediction Using Artificial Neural Network.Nesreen Samer El_Jerjawi & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 121:54-64.

Analytics

Added to PP
2019-03-12

Downloads
657 (#33,395)

6 months
139 (#30,841)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Samy S. Abu-Naser
North Dakota State University (PhD)

Citations of this work

Fraudulent Financial Transactions Detection Using Machine Learning.Mosa M. M. Megdad, Samy S. Abu-Naser & Bassem S. Abu-Nasser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):30-39.
Classification of Real and Fake Human Faces Using Deep Learning.Fatima Maher Salman & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):1-14.
Classification of Alzheimer's Disease Using Convolutional Neural Networks.Lamis F. Samhan, Amjad H. Alfarra & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):18-23.
Gender Prediction from Retinal Fundus Using Deep Learning.Ashraf M. Taha, Qasem M. M. Zarandah, Bassem S. Abu-Nasser, Zakaria K. D. AlKayyali & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (5):57-63.

View all 23 citations / Add more citations

References found in this work

No references found.

Add more references