Notre Dame Journal of Formal Logic 49 (3):281-293 (2008)

Abstract
From classical, Fraïissé-homogeneous, ($\leq \omega$)-categorical theories over finite relational languages, we construct intuitionistic theories that are complete, prove negations of classical tautologies, and admit quantifier elimination. We also determine the intuitionistic universal fragments of these theories
Keywords intuitionistic predicate logic   quantifier elimination   Kripke model   Fraïssé homogeneous   normal forms
Categories (categorize this paper)
DOI 10.1215/00294527-2008-012
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 64,178
Through your library

References found in this work BETA

Elementary Intuitionistic Theories.C. Smorynski - 1973 - Journal of Symbolic Logic 38 (1):102-134.
The Model Completion of the Class of ℒ-Structures.Stanley Burris - 1987 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (4):313-314.

View all 7 references / Add more references

Citations of this work BETA

Syntactic Preservation Theorems for Intuitionistic Predicate Logic.Jonathan Fleischmann - 2010 - Notre Dame Journal of Formal Logic 51 (2):225-245.

Add more citations

Similar books and articles

Analytics

Added to PP index
2010-09-13

Total views
22 ( #496,574 of 2,455,017 )

Recent downloads (6 months)
1 ( #449,233 of 2,455,017 )

How can I increase my downloads?

Downloads

My notes