Power-like models of set theory

Journal of Symbolic Logic 66 (4):1766-1782 (2001)
A model M = (M, E,...) of Zermelo-Fraenkel set theory ZF is said to be θ-like, where E interprets ∈ and θ is an uncountable cardinal, if |M| = θ but $|\{b \in M: bEa\}| for each a ∈ M. An immediate corollary of the classical theorem of Keisler and Morley on elementary end extensions of models of set theory is that every consistent extension of ZF has an ℵ 1 -like model. Coupled with Chang's two cardinal theorem this implies that if θ is a regular cardinal θ such that $2^{ then every consistent extension of ZF also has a θ + -like model. In particular, in the presence of the continuum hypothesis every consistent extension of ZF has an ℵ 2 -like model. Here we prove: THEOREM A. If θ has the tree property then the following are equivalent for any completion T of ZFC: (i) T has a θ-like model. (ii) $\Phi \subseteq T$ , where Φ is the recursive set of axioms {∃ κ(κ is n-Mahlo and "V κ is a Σ n -elementary submodel of the universe"): n ∈ ω}. (iii) T has a λ-like model for every uncountable cardinal λ. THEOREM B. The following are equiconsistent over ZFC: (i) "There exists an ω-Mahlo cardinal". (ii) "For every finite language L, all ℵ 2 -like models of ZFC(L) satisfy the scheme Φ(L)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2694973
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,422
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Uri Abraham (1983). Aronszajn Trees on ℵ2 and ℵ3. Annals of Pure and Applied Logic 24 (3):213-230.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

9 ( #439,497 of 1,924,768 )

Recent downloads (6 months)

1 ( #417,923 of 1,924,768 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.