Abstract
The hallmark of the deductive systems known as ‘conceptivist’ or ‘containment’ logics is that for all theorems of the form , all atomic formulae appearing in also appear in . Significantly, as a consequence, the principle of Addition fails. While often billed as a formalisation of Kantian analytic judgements, once semantics were discovered for these systems, the approach was largely discounted as merely the imposition of a syntactic filter on unrelated systems. In this paper, we examine a number of prima facie unrelated deductive contexts in which Addition fails and attempt to harmonise them by developing a computational interpretation of conceptivist logics