Hyperations, Veblen progressions and transfinite iteration of ordinal functions
Annals of Pure and Applied Logic 164 (7-8):785-801 (2013)
Abstract
Ordinal functions may be iterated transfinitely in a natural way by taking pointwise limits at limit stages. However, this has disadvantages, especially when working in the class of normal functions, as pointwise limits do not preserve normality. To this end we present an alternative method to assign to each normal function f a family of normal functions Hyp[f]=〈fξ〉ξ∈OnHyp[f]=〈fξ〉ξ∈On, called its hyperation, in such a way that f0=idf0=id, f1=ff1=f and fα+β=fα∘fβfα+β=fα∘fβ for all α, β.Hyperations are a refinement of the Veblen hierarchy of f. Moreover, if f is normal and has a well-behaved left-inverse g called a left adjoint, then g can be assigned a cohyperationcoH[g]=〈gξ〉ξ∈OncoH[g]=〈gξ〉ξ∈On, which is a family of initial functions such that gξgξ is a left adjoint to fξfξ for all ξAuthor's Profile
My notes
Similar books and articles
Autonomous progression and transfinite iteration of self-applicable truth.Kentaro Fujimoto - 2011 - Journal of Symbolic Logic 76 (3):914 - 945.
Strictly Primitive Recursive Realizability, II. Completeness with Respect to Iterated Reflection and a Primitive Recursive $\omega$ -Rule.Zlatan Damnjanovic - 1998 - Notre Dame Journal of Formal Logic 39 (3):363-388.
Systems of iterated projective ordinal notations and combinatorial statements about binary labeled trees.L. Gordeev - 1989 - Archive for Mathematical Logic 29 (1):29-46.
Bounded iteration and unary functions.Stefano Mazzanti - 2005 - Mathematical Logic Quarterly 51 (1):89-94.
An order‐theoretic characterization of the Schütte‐Veblen‐Hierarchy.Andreas Weiermann - 1993 - Mathematical Logic Quarterly 39 (1):367-383.
Transfinite Progressions: A Second Look At Completeness.Torkel Franzén - 2004 - Bulletin of Symbolic Logic 10 (3):367-389.
A simplified functorial construction of the veblen hierarchy.Andreas Weiermann - 1993 - Mathematical Logic Quarterly 39 (1):269-273.
Transfinite recursive progressions of axiomatic theories.Solomon Feferman - 1962 - Journal of Symbolic Logic 27 (3):259-316.
Review: G. Kreisel, Non-Uniqueness Results for Transfinite Progressions. [REVIEW]Donald Monk - 1960 - Journal of Symbolic Logic 25 (4):364-364.
Fruitful and helpful ordinal functions.Harold Simmons - 2008 - Archive for Mathematical Logic 47 (7-8):677-709.
On the completeness of some transfinite recursive progressions of axiomatic theories.Jens Erik Fenstad - 1968 - Journal of Symbolic Logic 33 (1):69-76.
Review: Solomon Feferman, Transfinite Recursive Progressions of Axiomatic Theories. [REVIEW]R. A. DiPaola - 1967 - Journal of Symbolic Logic 32 (4):530-531.
Analytics
Added to PP
2013-12-12
Downloads
30 (#392,052)
6 months
1 (#454,876)
2013-12-12
Downloads
30 (#392,052)
6 months
1 (#454,876)
Historical graph of downloads
Author's Profile
Citations of this work
On Provability Logics with Linearly Ordered Modalities.Lev D. Beklemishev, David Fernández-Duque & Joost J. Joosten - 2014 - Studia Logica 102 (3):541-566.
Models of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2013 - Journal of Symbolic Logic 78 (2):543-561.
The polytopologies of transfinite provability logic.David Fernández-Duque - 2014 - Archive for Mathematical Logic 53 (3-4):385-431.
Turing–Taylor Expansions for Arithmetic Theories.Joost Joosten - 2016 - Studia Logica 104 (6):1225-1243.
Strong completeness of provability logic for ordinal spaces.Juan P. Aguilera & David Fernández-Duque - 2017 - Journal of Symbolic Logic 82 (2):608-628.
References found in this work
Systems of predicative analysis, II: Representations of ordinals.Solomon Feferman - 1968 - Journal of Symbolic Logic 33 (2):193-220.
Provability algebras and proof-theoretic ordinals, I.Lev D. Beklemishev - 2004 - Annals of Pure and Applied Logic 128 (1-3):103-123.
Slow consistency.Sy-David Friedman, Michael Rathjen & Andreas Weiermann - 2013 - Annals of Pure and Applied Logic 164 (3):382-393.
Models of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2013 - Journal of Symbolic Logic 78 (2):543-561.
Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results.Andreas Weiermann - 2005 - Annals of Pure and Applied Logic 136 (1):189-218.