Possible world semantics for first order lp

First we have individual variables, as usual in first-order logics. (We do not have individual constants, but this is a minor point.) The propositional logic LP has justification constants, but in FOLP these are generalized to allow individual variables as arguments. Thus we have as justification constants c, c(x), c(x, y), . . . . Similarly LP has justification variables, but in FOLP these can be parametrized with individual variables p, p(x), p(x, y), . . . . To keep terminology in line with past papers, we will still refer to things as justification constants and justification variables, even though they have structure to them. As in LP, justification terms are built up from justification constants and justification variables using ·, +, ! as usual. In addition there is a new constructor, genx, introduced by Artemov, and there is one further new constructor, exsx, introduced in this paper. If t is a justification term and x is an individual variable, genxt and exsxt are justification terms. An individual variable x is free in a justification term unless it is bound by genx or exsx. More specifically, the free variables of p(x, y, . . .) and of c(x, y, . . .) are {x, y, . . .}, the free variables of s · t and of s + t are the free variables of s together with the free variables of t, the free variables of !s are the free variables of s, and the free variables of genxt and of exsxt are the free variables of t except for x. Formulas are built up from atomic formulas, including ⊥, in the way standard in first-order logic, together with the additional formation rule: t:X is a formula provided t is a justification term, X is a formula, and all free variables of X occur in t. We assume ⊃, ⊥, and ∀ are basic, with other connectives and quantifier defined. The axiomatization used here is a combination of an LP axiomatization and a standard axiomatization of first-order logic, together with a version of the Barcan formula, and one additional axiom that corresponds to the converse Barcan formula..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Translate to english
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 29,827
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
55 ( #103,338 of 2,210,098 )

Recent downloads (6 months)
2 ( #222,637 of 2,210,098 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature