Uses of a quantum master inequality

Abstract
An inequality in quantum mechanics, which does not appear to be well known, is derived by elementary means and shown to be quite useful. The inequality applies to 'all' operators and 'all' pairs of quantum states, including mixed states. It generalizes the rule of the orthogonality of eigenvectors for distinct eigenvalues and is shown to imply all the Robertson generalized uncertainty relations. It severely constrains the difference between probabilities obtained from 'close' quantum states and the different responses they can have to unitary transformations. Thus, it is dubbed a master inequality. With appropriate definitions the inequality also holds throughout general probability theory and appears not to be well known there either. That classical inequality is obtained here in an appendix. The quantum inequality can be obtained from the classical version but a more direct quantum approach is employed here. A similar but weaker classical inequality has been reported by Uffink and van Lith.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index
2009-01-28

Total downloads
69 ( #78,247 of 2,191,308 )

Recent downloads (6 months)
1 ( #291,146 of 2,191,308 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature