Authors
Abstract
In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
Keywords Löb’s Theorem   Second Godel Theorem  Inaccessible Cardinal  Standard Model of ZFC
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

 PhilArchive page | Other versions
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Solution of a Problem of Leon Henkin.M. H. Löb - 1955 - Journal of Symbolic Logic 20 (2):115-118.
Handbook of Mathematical Logic.Akihiro Kanamori - 1984 - Journal of Symbolic Logic 49 (3):971-975.
[Omnibus Review].Akihiro Kanamori - 1981 - Journal of Symbolic Logic 46 (4):864-866.

View all 6 references / Add more references

Citations of this work BETA

Relevant First-Order Logic LP# and Curry’s Paradox Resolution.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal Volume 4, Issue 1-1, January 2015 DOI: 10.11648/J.Pamj.S.2015040101.12.

Add more citations

Similar books and articles

Implications Between Strong Large Cardinal Axioms.Richard Laver - 1997 - Annals of Pure and Applied Logic 90 (1-3):79-90.
Reflection of Elementary Embedding Axioms on the L[Vλ+1] Hierarchy.Richard Laver - 2001 - Annals of Pure and Applied Logic 107 (1-3):227-238.
An Easton Theorem for Level by Level Equivalence.Arthur W. Apter - 2005 - Mathematical Logic Quarterly 51 (3):247-253.
A Strong Reflection Principle.Sam Roberts - 2017 - Review of Symbolic Logic 10 (4):651-662.
Incompatible Ω-Complete Theories.Peter Koellner & W. Hugh Woodin - 2009 - Journal of Symbolic Logic 74 (4):1155 - 1170.
The Search for New Axioms.Peter Koellner - 2003 - Dissertation, Massachusetts Institute of Technology
Reducing the Consistency Strength of an Indestructibility Theorem.Arthur W. Apter - 2008 - Mathematical Logic Quarterly 54 (3):288-293.
On Reflection Principles.Peter Koellner - 2009 - Annals of Pure and Applied Logic 157 (2-3):206-219.
Generic Compactness Reformulated.Bernhard König - 2004 - Archive for Mathematical Logic 43 (3):311-326.
Guessing Models and Generalized Laver Diamond.Matteo Viale - 2012 - Annals of Pure and Applied Logic 163 (11):1660-1678.
Gap Forcing: Generalizing the Lévy-Solovay Theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.

Analytics

Added to PP index
2018-02-14

Total views
89 ( #122,460 of 2,455,424 )

Recent downloads (6 months)
3 ( #225,815 of 2,455,424 )

How can I increase my downloads?

Downloads

My notes