Archive for Mathematical Logic 56 (5-6):691-697 (2017)
Authors | |
Abstract |
In this paper we introduce a tree-like forcing notion extending some properties of the random forcing in the context of 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\kappa $$\end{document}, κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} inaccessible, and study its associated ideal of null sets and notion of measurability. This issue was addressed by Shelah ), arXiv:0904.0817, Problem 0.5) and concerns the definition of a forcing which is κκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^\kappa $$\end{document}-bounding, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,>\,$$\end{document}cov_λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_\lambda $$\end{document}), arXiv:0904.0817, Problem 0.5), and in this paper we independently reprove this result by using a different type of construction. This also contributes to a line of research adressed in the survey paper :439–456, 2016).
|
Keywords | No keywords specified (fix it) |
Categories |
No categories specified (categorize this paper) |
DOI | 10.1007/s00153-017-0562-7 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Generalized Silver and Miller Measurability.Giorgio Laguzzi - 2015 - Mathematical Logic Quarterly 61 (1-2):91-102.
Solovay-Type Characterizations for Forcing-Algebras.Jörg Brendle & Benedikt Löwe - 1999 - Journal of Symbolic Logic 64 (3):1307-1323.
Questions on Generalised Baire Spaces.Yurii Khomskii, Giorgio Laguzzi, Benedikt Löwe & Ilya Sharankou - 2016 - Mathematical Logic Quarterly 62 (4-5):439-456.
A Parallel to the Null Ideal for Inaccessible $$\lambda $$ Λ : Part I.Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (3-4):319-383.
Perfect Subsets of Generalized Baire Spaces and Long Games.Philipp Schlicht - 2017 - Journal of Symbolic Logic 82 (4):1317-1355.
Citations of this work BETA
Generalized Silver and Miller Measurability.Giorgio Laguzzi - 2015 - Mathematical Logic Quarterly 61 (1-2):91-102.
Special Subsets of the Generalized Cantor Space and Generalized Baire Space.Michał Korch & Tomasz Weiss - 2020 - Mathematical Logic Quarterly 66 (4):418-437.
Similar books and articles
Hechler’s Theorem for the Null Ideal.Maxim R. Burke & Masaru Kada - 2004 - Archive for Mathematical Logic 43 (5):703-722.
Properties of Ideals on the Generalized Cantor Spaces.Jan Kraszewski - 2001 - Journal of Symbolic Logic 66 (3):1303-1320.
Properties of Ideals on the Generalized Cantor Spaces.Jan Kraszewski - 2001 - Journal of Symbolic Logic 66 (3):1303-1320.
Dirac Brackets for General Relativity on a Null Cone.Joshua N. Goldberg - 1985 - Foundations of Physics 15 (4):439-450.
The Hamiltonian of General Relativity on a Null Surface.J. N. Goldberg - 1984 - Foundations of Physics 14 (12):1211-1216.
Remarks on Nonmeasurable Unions of Big Point Families.Robert Rałowski - 2009 - Mathematical Logic Quarterly 55 (6):659-665.
Chow's Defense of Null-Hypothesis Testing: Too Traditional?Robert W. Frick - 1998 - Behavioral and Brain Sciences 21 (2):199-199.
Null-Hypothesis Tests Are Not Completely Stupid, but Bayesian Statistics Are Better.David Rindskopf - 1998 - Behavioral and Brain Sciences 21 (2):215-216.
From Null Hypothesis to Null Dogma.N. J. Mackintosh - 1987 - Behavioral and Brain Sciences 10 (4):689.
Inaccessibility in Constructive Set Theory and Type Theory.Michael Rathjen, Edward R. Griffor & Erik Palmgren - 1998 - Annals of Pure and Applied Logic 94 (1-3):181-200.
Self-Dual Maxwell Field on a Null Surface. II.Joshua N. Goldberg - 1994 - Foundations of Physics 24 (4):467-476.
Covering Properties of Ideals.Marek Balcerzak, Barnabás Farkas & Szymon Gła̧b - 2013 - Archive for Mathematical Logic 52 (3-4):279-294.
Closed Measure Zero Sets.Tomek Bartoszynski & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (2):93-110.
Analytics
Added to PP index
2017-06-20
Total views
20 ( #560,565 of 2,519,681 )
Recent downloads (6 months)
1 ( #406,314 of 2,519,681 )
2017-06-20
Total views
20 ( #560,565 of 2,519,681 )
Recent downloads (6 months)
1 ( #406,314 of 2,519,681 )
How can I increase my downloads?
Downloads