# A null ideal for inaccessibles

Archive for Mathematical Logic 56 (5-6):691-697 (2017)

 Authors Abstract In this paper we introduce a tree-like forcing notion extending some properties of the random forcing in the context of 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\kappa$$\end{document}, κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} inaccessible, and study its associated ideal of null sets and notion of measurability. This issue was addressed by Shelah ), arXiv:0904.0817, Problem 0.5) and concerns the definition of a forcing which is κκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^\kappa$$\end{document}-bounding, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,>\,$$\end{document}cov_λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_\lambda$$\end{document}), arXiv:0904.0817, Problem 0.5), and in this paper we independently reprove this result by using a different type of construction. This also contributes to a line of research adressed in the survey paper :439–456, 2016). Keywords No keywords specified (fix it) Categories No categories specified (categorize this paper) DOI 10.1007/s00153-017-0562-7 Options Mark as duplicate Export citation Request removal from index

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 71,379

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)

## References found in this work BETA

Generalized Silver and Miller Measurability.Giorgio Laguzzi - 2015 - Mathematical Logic Quarterly 61 (1-2):91-102.
Solovay-Type Characterizations for Forcing-Algebras.Jörg Brendle & Benedikt Löwe - 1999 - Journal of Symbolic Logic 64 (3):1307-1323.
A Parallel to the Null Ideal for Inaccessible $$\lambda$$ Λ : Part I.Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (3-4):319-383.
Perfect Subsets of Generalized Baire Spaces and Long Games.Philipp Schlicht - 2017 - Journal of Symbolic Logic 82 (4):1317-1355.

## Citations of this work BETA

Generalized Silver and Miller Measurability.Giorgio Laguzzi - 2015 - Mathematical Logic Quarterly 61 (1-2):91-102.

## Similar books and articles

Hechler’s Theorem for the Null Ideal.Maxim R. Burke & Masaru Kada - 2004 - Archive for Mathematical Logic 43 (5):703-722.
Properties of Ideals on the Generalized Cantor Spaces.Jan Kraszewski - 2001 - Journal of Symbolic Logic 66 (3):1303-1320.
Properties of Ideals on the Generalized Cantor Spaces.Jan Kraszewski - 2001 - Journal of Symbolic Logic 66 (3):1303-1320.
Dirac Brackets for General Relativity on a Null Cone.Joshua N. Goldberg - 1985 - Foundations of Physics 15 (4):439-450.
The Hamiltonian of General Relativity on a Null Surface.J. N. Goldberg - 1984 - Foundations of Physics 14 (12):1211-1216.
Remarks on Nonmeasurable Unions of Big Point Families.Robert Rałowski - 2009 - Mathematical Logic Quarterly 55 (6):659-665.
Chow's Defense of Null-Hypothesis Testing: Too Traditional?Robert W. Frick - 1998 - Behavioral and Brain Sciences 21 (2):199-199.
From Null Hypothesis to Null Dogma.N. J. Mackintosh - 1987 - Behavioral and Brain Sciences 10 (4):689.
Self-Dual Maxwell Field on a Null Surface. II.Joshua N. Goldberg - 1994 - Foundations of Physics 24 (4):467-476.
Covering Properties of Ideals.Marek Balcerzak, Barnabás Farkas & Szymon Gła̧b - 2013 - Archive for Mathematical Logic 52 (3-4):279-294.
Aesthetic Fields—Null Theory II.M. Muraskin - 1982 - Foundations of Physics 12 (1):93-100.
Closed Measure Zero Sets.Tomek Bartoszynski & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (2):93-110.