Axiomatization of set theory by extensionality, separation, and reducibility

We discuss several axiomatizations of set theory in first order predicate calculus with epsilon and a constant symbol W, starting with the simple system K(W) which has a strong equivalence with ZF without Foundation. The other systems correspond to various extensions of ZF by certain large cardinal hypotheses. These axiomatizations are unusually simple and uncluttered, and are highly suggestive of underlying philosophical principles that generate higher set theory.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,850
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
255 ( #15,501 of 2,214,135 )

Recent downloads (6 months)
1 ( #410,607 of 2,214,135 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature