In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 185-204 (2018)
Authors |
|
Abstract |
The iterative concept of set is standardly taken to justify ZFC and some of its extensions. In this paper, we show that the maximal iterative concept also lies behind a class of further maximality principles expressing the maximality of the universe of sets V in height and width. These principles have been heavily investigated by the first author and his collaborators within the Hyperuniverse Programme. The programme is based on two essential tools: the hyperuniverse, consisting of all countable transitive models of ZFC, and V -logic, both of which are also fully discussed in the paper.
|
Keywords | No keywords specified (fix it) |
Categories |
No categories specified (categorize this paper) |
Buy the book |
Find it on Amazon.com
|
DOI | 10.1007/978-3-319-62935-3_9 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
No citations found.
Similar books and articles
The Search for New Axioms in the Hyperuniverse Programme.Sy-David Friedman & Claudio Ternullo - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 161-183.
Evidence for Set-Theoretic Truth and the Hyperuniverse Programme.Sy-David Friedman - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 75-107.
The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Andrea Sereni & Francesca Boccuni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Berlin: Springer. pp. 165-188.
The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. Filmat Studies in the Philosophy of Mathematics. Berlin: Springer Verlag. pp. 165-188.
The Hyperuniverse Project and Maximality.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.) - 2018 - Basel, Switzerland: Birkhäuser.
Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 47-73.
Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
Maximality and Ontology: How Axiom Content Varies Across Philosophical Frameworks.Sy-David Friedman & Neil Barton - 2017 - Synthese 197 (2):623-649.
On Strong Forms of Reflection in Set Theory.Sy-David Friedman & Radek Honzik - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 125-134.
Remarks on Buzaglo’s Concept Expansion and Cantor’s Transfinite.Claudio Ternullo - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 259-270.
The Hyperuniverse Program.Tatiana Arrigoni & Sy-David Friedman - 2013 - Bulletin of Symbolic Logic 19 (1):77-96.
Definability of Satisfaction in Outer Models.Sy-David Friedman & Radek Honzik - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 135-160.
On the Set-Generic Multiverse.Sy-David Friedman, Sakaé Fuchino & Hiroshi Sakai - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 109-124.
Closed Maximality Principles and Generalized Baire Spaces.Philipp Lücke - 2019 - Notre Dame Journal of Formal Logic 60 (2):253-282.
Analytics
Added to PP index
2020-06-17
Total views
2 ( #1,448,074 of 2,507,561 )
Recent downloads (6 months)
1 ( #416,983 of 2,507,561 )
2020-06-17
Total views
2 ( #1,448,074 of 2,507,561 )
Recent downloads (6 months)
1 ( #416,983 of 2,507,561 )
How can I increase my downloads?
Downloads