Notre Dame Journal of Formal Logic 59 (3):355-370 (2018)
Authors |
|
Abstract |
Ehrenfeucht’s lemma asserts that whenever one element of a model of Peano arithmetic is definable from another, they satisfy different types. We consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The original argument applies directly to the ordinal-definable elements of any model of set theory, and, in particular, Ehrenfeucht’s lemma holds fully for models of set theory satisfying V=HOD. We show that the lemma fails in the forcing extension of the universe by adding a Cohen real. We go on to formulate a scheme of natural parametric generalizations of Ehrenfeucht’s lemma, namely, the principles of the form EL, which asserts that P-definability from A implies Q-discernibility. We also consider various analogues of Ehrenfeucht’s lemma obtained by using algebraicity in place of definability, where a set b is algebraic in a if it is a member of a finite set definable from a. Ehrenfeucht’s lemma holds for the ordinal-algebraic sets, we prove, if and only if the ordinal-algebraic and ordinal-definable sets coincide. Using a similar analysis, we answer two open questions posed earlier by the third author and C. Leahy, showing that algebraicity and definability need not coincide in models of set theory and the internal and external notions of being ordinal algebraic need not coincide.
|
Keywords | Leibniz–Mycielski axiom algebraicity ordinal definability Ehrenfeucht’s lemma |
Categories | (categorize this paper) |
DOI | 10.1215/00294527-2018-0007 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Models and Types of Peano's Arithmetic.Haim Gaifman - 1976 - Annals of Mathematical Logic 9 (3):223-306.
Pointwise Definable Models of Set Theory.Joel David Hamkins, David Linetsky & Jonas Reitz - 2013 - Journal of Symbolic Logic 78 (1):139-156.
Algebraicity and Implicit Definability in Set Theory.Joel David Hamkins & Cole Leahy - 2016 - Notre Dame Journal of Formal Logic 57 (3):431-439.
Discernible Elements in Models for Peano Arithmetic.Andrzej Ehrenfeucht - 1973 - Journal of Symbolic Logic 38 (2):291-292.
View all 6 references / Add more references
Citations of this work BETA
An Unpublished Theorem of Solovay on OD Partitions of Reals Into Two Non-OD Parts, Revisited.Ali Enayat & Vladimir Kanovei - 2020 - Journal of Mathematical Logic 21 (3):2150014.
Similar books and articles
Algebraicity and Implicit Definability in Set Theory.Joel David Hamkins & Cole Leahy - 2016 - Notre Dame Journal of Formal Logic 57 (3):431-439.
Nowy postulat teorii mnogości – aksjomat Leibniza-Mycielskiego.Piotr Wilczek - 2010 - Filozofia Nauki 18 (3).
On the Hamkins Approximation Property.William J. Mitchell - 2006 - Annals of Pure and Applied Logic 144 (1-3):126-129.
Ehrenfeucht Games and Ordinal Addition.Françoise Maurin - 1997 - Annals of Pure and Applied Logic 89 (1):53-73.
Dickson's Lemma and Higman's Lemma Are Equivalent.Berger Josef - 2016 - SOUTH AMERICAN JOURNAL OF LOGIC 2 (1):35-39.
On Ehrenfeucht-Fraïssé Equivalence of Linear Orderings.Juha Oikkonen - 1990 - Journal of Symbolic Logic 55 (1):65-73.
On Non‐Determined Ehrenfeucht‐Fraïssé Games and Unstable Theories.Tapani Hyttinen & T. Hyttinen - 1992 - Mathematical Logic Quarterly 38 (1):399-408.
Categorical Abstract Algebraic Logic: The Diagram and the Reduction Operator Lemmas.George Voutsadakis - 2007 - Mathematical Logic Quarterly 53 (2):147-161.
Some Consequences of Rado’s Selection Lemma.Marianne Morillon - 2012 - Archive for Mathematical Logic 51 (7-8):739-749.
Addendum and Corrigendum Choice Principles in Hyperuniverses Annals of Pure and Applied Logic 77 (1996) 35–52.Marco Forti & Furio Honsell - 1998 - Annals of Pure and Applied Logic 92 (2):211-214.
Structures in Logic and Computer Science a Selection of Essays in Honor of A. Ehrenfeucht.Andrzej Ehrenfeucht - 1997 - Springer Verlag.
Itô’s Lemma with Quantum Calculus : Some Implications. [REVIEW]Emmanuel Haven - 2011 - Foundations of Physics 41 (3):529-537.
Zorn's Lemma and Complete Boolean Algebras in Intuitionistic Type Theories.J. L. Bell - 1997 - Journal of Symbolic Logic 62 (4):1265-1279.
Ramsey’s Theorem and König’s Lemma.T. E. Forster & J. K. Truss - 2007 - Archive for Mathematical Logic 46 (1):37-42.
Analytics
Added to PP index
2018-06-20
Total views
11 ( #852,788 of 2,507,867 )
Recent downloads (6 months)
1 ( #416,715 of 2,507,867 )
2018-06-20
Total views
11 ( #852,788 of 2,507,867 )
Recent downloads (6 months)
1 ( #416,715 of 2,507,867 )
How can I increase my downloads?
Downloads