The Easy Way to Gödel's Proof and Related Matters

This short sketch of Gödel’s incompleteness proof shows how it arises naturally from Cantor’s diagonalization method [1891]. It renders the proof of the so–called fixed point theorem transparent. We also point out various historical details and make some observations on circularity and some comparisons with natural language. The sketch does not include the messy details of the arithmetization of the language, but the motive for arithmetization and what it should accomplish are made obvious. We suggest this as a way to teach the incompleteness results to students that have had a basic course in logic, which is more efficient than the standard textbooks. For the sake of self–containment Cantor’s original diagonalization is included. A broader and more technical perspective on diagonalization is given in [Gaifman 2005]. Motivated partly by didactic considerations, the present paper presents things somewhat differently. It also includes various points concerning natural language and circularity that appear only here
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,106
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

65 ( #81,116 of 2,171,744 )

Recent downloads (6 months)

4 ( #76,305 of 2,171,744 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums