Perceptron Connectives in Knowledge Representation

In Pietro Galliani, Guendalina Righetti, Daniele Porello, Oliver Kutz & Nicolas Toquard (eds.), Knowledge Engineering and Knowledge Management - 22nd International Conference, {EKAW} 2020, Bolzano, Italy, September 16-20, 2020, Proceedings. Lecture Notes in Computer Science 12387. pp. 183-193 (2020)
  Copy   BIBTEX


We discuss the role of perceptron (or threshold) connectives in the context of Description Logic, and in particular their possible use as a bridge between statistical learning of models from data and logical reasoning over knowledge bases. We prove that such connectives can be added to the language of most forms of Description Logic without increasing the complexity of the corresponding inference problem. We show, with a practical example over the Gene Ontology, how even simple instances of perceptron connectives are expressive enough to represent learned, complex concepts derived from real use cases. This opens up the possibility to import concepts learnt from data into existing ontologies.



External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Exploring Machine Learning Techniques for Coronary Heart Disease Prediction.Hisham Khdair - 2021 - International Journal of Advanced Computer Science and Applications 12 (5):28-36.
Machine Learning and Job Posting Classification: A Comparative Study.Ibrahim M. Nasser & Amjad H. Alzaanin - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (9):06-14.


Added to PP

252 (#80,947)

6 months
95 (#48,389)

Historical graph of downloads
How can I increase my downloads?

Author Profiles