Dialectica 43 (4):329-337 (1989)
Authors |
|
Abstract |
SummaryFinite, or Fermat arithmetic, as we call it, differs from Peano arithmetic in that it does not involve the existence of an infinite set or Peano's induction postulate. Fermat's method of infinite descent takes the place of bound induction, and we show that a con‐structivist interpretation of logical connectives and quantifiers can account for the predicative finitary nature of Fermat's arithmetic. A non‐set‐theoretic arithemetical logic thus seems best suited to a constructivist‐inspired number theory
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.1111/j.1746-8361.1989.tb00949.x |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Mathematical Logic.Joseph Shoenfield - 1967 - Reading, MA, USA: Reading, Mass., Addison-Wesley Pub. Co..
View all 6 references / Add more references
Citations of this work BETA
De la logique à l’arithmétique. Pourquoi des logiques et des mathématiques constructivistes?Yvon Gauthier - 2018 - Dialogue 57 (1):1-28.
Similar books and articles
How to Take Advantage of the Blur Between the Finite and the Infinite.Pierre Cartier - 2012 - Logica Universalis 6 (1-2):217-226.
Theories of Arithmetics in Finite Models.Michał Krynicki & Konrad Zdanowski - 2005 - Journal of Symbolic Logic 70 (1):1-28.
Relación metafísica de finito E Infinito en nicolás de cusa.Angel Luis Gonzáles - 2012 - Giornale di Metafisica 1.
A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
Finitude and Hume's Principle.Richard G. Heck Jr - 1997 - Journal of Philosophical Logic 26 (6):589 - 617.
Second-Order Characterizable Cardinals and Ordinals.Benjamin R. George - 2006 - Studia Logica 84 (3):425 - 449.
Infinite Substructure Lattices of Models of Peano Arithmetic.James H. Schmerl - 2010 - Journal of Symbolic Logic 75 (4):1366-1382.
Analytics
Added to PP index
2013-11-21
Total views
18 ( #608,430 of 2,507,683 )
Recent downloads (6 months)
1 ( #416,871 of 2,507,683 )
2013-11-21
Total views
18 ( #608,430 of 2,507,683 )
Recent downloads (6 months)
1 ( #416,871 of 2,507,683 )
How can I increase my downloads?
Downloads