Scientiae Studia 13 (1):11-48 (2015)

Eduardo Giovannini
University of Vienna
Sobre la base que aportan las notas manuscritas de David Hilbert para cursos sobre geometría, el artículo procura contextualizar y analizar una de las contribuciones más importantes y novedosas de su célebre monografía Fundamentos de la geometría, a saber: el cálculo de segmentos lineales. Se argumenta que, además de ser un resultado matemático importante, Hilbert depositó en su aritmética de segmentos un destacado significado epistemológico y metodológico. En particular, se afirma que para Hilbert este resultado representaba un claro ejemplo de uno de los rasgos más fructíferos y atractivos de su nuevo método axiomático formal, o sea, la capacidad de descubrir y exhibir conexiones estructurales o internas entre diferentes teorías matemáticas. On the basis of a set of unpublished notes for lecture courses on geometry, the paper seeks to contextualize and analyze one of the most important and original contributions of David Hilbert's celebrated monograph Foundations of Geometry, namely its arithmetic of line segments. It is argued that Hilbert attributed to his arithmetic of segments an important epistemological and methodological meaning, in addition to its relevance as an original mathematical result. In particular, it is claimed that for Hilbert his arithmetic of segments represented a clear example of one of the most fruitful and attractive traits of his new formal axiomatic method, i.e., the power to discover and exhibit inner or structural connections among different mathematical theories
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1590/S1678-31662015000100002
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 62,577
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Pasch’s Philosophy of Mathematics.Dirk Schlimm - 2010 - Review of Symbolic Logic 3 (1):93-118.

View all 9 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Randomness Everywhere.C. S. Calude & G. J. Chaitin - 1999 - Nature 400:319-320.
Aspekte der frege–hilbert-korrespondenz.Kai F. Wehmeier - 1997 - History and Philosophy of Logic 18 (4):201-209.


Added to PP index

Total views
31 ( #349,795 of 2,446,580 )

Recent downloads (6 months)
1 ( #456,908 of 2,446,580 )

How can I increase my downloads?


My notes