A Natural Model of the Multiverse Axioms

Notre Dame Journal of Formal Logic 51 (4):475-484 (2010)
  Copy   BIBTEX

Abstract

If ZFC is consistent, then the collection of countable computably saturated models of ZFC satisfies all of the Multiverse Axioms of Hamkins

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 96,235

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On the Set-Generic Multiverse.Sy-David Friedman, Sakaé Fuchino & Hiroshi Sakai - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Basel, Switzerland: Birkhäuser. pp. 109-124.
Closed Maximality Principles and Generalized Baire Spaces.Philipp Lücke - 2019 - Notre Dame Journal of Formal Logic 60 (2):253-282.
The Consistency Strength of M P C C C.George Leibman - 2010 - Notre Dame Journal of Formal Logic 51 (2):181-193.
Pointwise definable models of set theory.Joel David Hamkins, David Linetsky & Jonas Reitz - 2013 - Journal of Symbolic Logic 78 (1):139-156.
Infinite Forcing and the Generic Multiverse.Giorgio Venturi - 2020 - Studia Logica 108 (2):277-290.
Localizing the axioms.Athanassios Tzouvaras - 2010 - Archive for Mathematical Logic 49 (5):571-601.
The Copernican Multiverse of Sets.Paul K. Gorbow & Graham E. Leigh - 2022 - Review of Symbolic Logic 15 (4):1033-1069.

Analytics

Added to PP
2010-09-30

Downloads
156 (#130,542)

6 months
35 (#119,951)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

References found in this work

The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
Countable models of set theories.Harvey Friedman - 1973 - In A. R. D. Mathias & Hartley Rogers (eds.), Cambridge Summer School in Mathematical Logic. New York,: Springer Verlag. pp. 539--573.
Recursively saturated nonstandard models of arithmetic.C. Smoryński - 1981 - Journal of Symbolic Logic 46 (2):259-286.

Add more references