Abstract
We make use of natural induction to propose, following John Ju Sakurai, a generalization of Bell's inequality for two spin s=n/2(n=1,2,...) particle systems in a singlet state. We have found that for any finite integer or half-integer spin Bell's inequality is violated when the terms in the inequality are calculated from a quantum mechanical point of view. In the final expression for this inequality the two members therein are expressed in terms of a single parameter θ. Violation occurs for θ in some interval of the form (α,π/2) where α parameter becomes closer and closer to π/2, as the spin grows, that is, the greater the spin number the size of the interval in which violation occurs diminishes to zero. Bell's inequality is a relationship among observables that discriminates between Einstein's locality principle and the non-local point of view of orthodox quantum mechanics. So our conclusion may also be stated by saying that for large spin numbers the non-local and local points of view agree