Cut-free single-pass tableaux for the logic of common knowledge


Abstract
We present a cut-free tableau calculus with histories and variables for the EXPTIME-complete multi-modal logic of common knowledge. Our calculus constructs the tableau using only one pass, so proof-search for testing theoremhood of ϕ does not exhibit the worst-case EXPTIME-behaviour for all ϕ as in two-pass methods. Our calculus also does not contain a “finitized ω-rule” so that it detects cyclic branches as soon as they arise rather than by worst-case exponential branching with respect to the size of ϕ. Moreover, by retaining the rooted-tree form from traditional tableaux, our calculus becomes amenable to the vast array of optimisation techniques which have proved essential for “practical” automated reasoning in very expressive description logics. Our calculus forms the basis for developing a uniform framework for the family of all fix-point logics of common knowledge. However, there is still no “free lunch” as, in the worst case, our method exhibits 2EXPTIME-behaviour. A prototype implementation can be found at twb.rsise.anu.edu.au which allows users to test formulae via a simple graphical interface
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 39,607
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
177 ( #37,140 of 2,325,336 )

Recent downloads (6 months)
1 ( #927,055 of 2,325,336 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature