Symplectic Quantization II: Dynamics of Space–Time Quantum Fluctuations and the Cosmological Constant

Foundations of Physics 51 (3):1-18 (2021)
  Copy   BIBTEX

Abstract

The symplectic quantization scheme proposed for matter scalar fields in the companion paper (Gradenigo and Livi, arXiv:2101.02125, 2021) is generalized here to the case of space–time quantum fluctuations. That is, we present a new formalism to frame the quantum gravity problem. Inspired by the stochastic quantization approach to gravity, symplectic quantization considers an explicit dependence of the metric tensor gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document} on an additional time variable, named intrinsic time at variance with the coordinate time of relativity, from which it is different. The physical meaning of intrinsic time, which is truly a parameter and not a coordinate, is to label the sequence of gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document} quantum fluctuations at a given point of the four-dimensional space–time continuum. For this reason symplectic quantization necessarily incorporates a new degree of freedom, the derivative g˙μν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{g}}_{\mu \nu }$$\end{document} of the metric field with respect to intrinsic time, corresponding to the conjugated momentum πμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\mu \nu }$$\end{document}. Our proposal is to describe the quantum fluctuations of gravity by means of a symplectic dynamics generated by a generalized action functional A[gμν,πμν]=K[gμν,πμν]-S[gμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }] = {\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }] - S[g_{\mu \nu }]$$\end{document}, playing formally the role of a Hamilton function, where S[gμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S[g_{\mu \nu }]$$\end{document} is the standard Einstein–Hilbert action while K[gμν,πμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }]$$\end{document} is a new term including the kinetic degrees of freedom of the field. Such an action allows us to define an ensemble for the quantum fluctuations of gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document} analogous to the microcanonical one in statistical mechanics, with the only difference that in the present case one has conservation of the generalized action A[gμν,πμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }]$$\end{document} and not of energy. Since the Einstein–Hilbert action S[gμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S[g_{\mu \nu }]$$\end{document} plays the role of a potential term in the new pseudo-Hamiltonian formalism, it can fluctuate along the symplectic action-preserving dynamics. These fluctuations are the quantum fluctuations of gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document}. Finally, we show how the standard path-integral approach to gravity can be obtained as an approximation of the symplectic quantization approach. By doing so we explain how the integration over the conjugated momentum field πμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\mu \nu }$$\end{document} gives rise to a cosmological constant term in the path-integral approach.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,164

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Cofinality of the laver ideal.Miroslav Repický - 2016 - Archive for Mathematical Logic 55 (7-8):1025-1036.
$$I_0$$ I 0 and combinatorics at $$\lambda ^+$$ λ +.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1-2):131-154.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Models of weak theories of truth.Mateusz Łełyk & Bartosz Wcisło - 2017 - Archive for Mathematical Logic 56 (5-6):453-474.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Set theory without choice: not everything on cofinality is possible.Saharon Shelah - 1997 - Archive for Mathematical Logic 36 (2):81-125.
Some properties of r-maximal sets and Q 1,N -reducibility.R. Sh Omanadze - 2015 - Archive for Mathematical Logic 54 (7-8):941-959.
Square principles with tail-end agreement.William Chen & Itay Neeman - 2015 - Archive for Mathematical Logic 54 (3-4):439-452.
Σ1-wellorders without collapsing.Peter Holy - 2015 - Archive for Mathematical Logic 54 (3-4):453-462.

Analytics

Added to PP
2021-05-26

Downloads
11 (#1,070,627)

6 months
9 (#242,802)

Historical graph of downloads
How can I increase my downloads?