Foundations of Physics 6 (1):111-113 (1976)
Abstract |
The classical Hamiltonian in generalized coordinates is given asH=1/2 Σ i.k p i g ik p k . We show that there is no operator of the formP i= −iA(qi) (∂/∂qi)+Gi(qi) (note that the Hermitian momentum operatorP i H is of this form) such that the quantum Hamiltonian operatorH Q is given asH Q =1/2 Σ i,k P i g ik P k or1/2 Σ i,k g ik P i P k , etc. In order to maintain a direct transition of this sort from classical to quantum theory, using the classical Hamiltonian as a starting point, we must rely on our previous prescriptions, writing the quantum Hamiltonian asH Q =1/2 Σ i,k P i + g ik P k , whereP i + denotes the adjoint of the operatorP i=−ih ∂/∂qi
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.1007/BF00708669 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
No citations found.
Similar books and articles
Quantization in Generalized Coordinates.Gary R. Gruber - 1971 - Foundations of Physics 1 (3):227-234.
A New Look at the Transition of Classical to Quantum Mechanics.Gary R. Gruber - 1975 - Foundations of Physics 5 (1):59-61.
Self-Adjointness of Momentum Operators in Generalized Coordinates.J. M. Domingos & M. H. Caldeira - 1984 - Foundations of Physics 14 (2):147-154.
A Continuous Transition Between Quantum and Classical Mechanics. I.Partha Ghose - 2002 - Foundations of Physics 32 (6):871-892.
The Physical Properties of Linear and Action-Angle Coordinates in Classical and Quantum Mechanics.Robert A. Leacock - 1987 - Foundations of Physics 17 (8):799-807.
Imprints of the Quantum World in Classical Mechanics.Maurice A. de Gosson & Basil J. Hiley - 2011 - Foundations of Physics 41 (9):1415-1436.
Remark on a Group-Theoretical Formalism for Quantum Mechanics and the Quantum-to-Classical Transition.J. K. Korbicz & M. Lewenstein - 2007 - Foundations of Physics 37 (6):879-896.
Gauge Transformations for a Driven Quantum Particle in an Infinite Square Well.Stefan Weigert - 1999 - Foundations of Physics 29 (11):1785-1805.
Quantum Model of Classical Mechanics: Maximum Entropy Packets. [REVIEW]P. Hájíček - 2009 - Foundations of Physics 39 (9):1072-1096.
A Continuous Transition Between Quantum and Classical Mechanics. II.Partha Ghose & Manoj K. Samal - 2002 - Foundations of Physics 32 (6):893-906.
On the Classical Limit of Quantum Mechanics.Valia Allori & Nino Zanghi - 2008 - Foundations of Physics 10.1007/S10701-008-9259-4 39 (1):20-32.
Indeterminacy and Entanglement: The Challenge of Quantum Mechanics.J. Bub - 2000 - British Journal for the Philosophy of Science 51 (4):597-615.
Analytics
Added to PP index
2013-11-22
Total views
45 ( #220,981 of 2,401,526 )
Recent downloads (6 months)
2 ( #361,701 of 2,401,526 )
2013-11-22
Total views
45 ( #220,981 of 2,401,526 )
Recent downloads (6 months)
2 ( #361,701 of 2,401,526 )
How can I increase my downloads?
Downloads