The semantic challenge to computational neuroscience

In Peter McLaughlin, Peter Machamer & Rick Grush (eds.), Theory and Method in the Neurosciences. Pittsburgh University Press. pp. 155--172 (2001)
  Copy   BIBTEX

Abstract

I examine one of the conceptual cornerstones of the field known as computational neuroscience, especially as articulated in Churchland et al. (1990), an article that is arguably the locus classicus of this term and its meaning. The authors of that article try, but I claim ultimately fail, to mark off the enterprise of computational neuroscience as an interdisciplinary approach to understanding the cognitive, information-processing functions of the brain. The failure is a result of the fact that the authors provide no principled means to distinguish the study of neural systems as genuinely computational/information-processing from the study of any complex causal process. I then argue for two things. First, that in order to appropriately mark off computational neuroscience, one must be able to assign a semantics to the states over which an attempt to provide a computational explanation is made. Second, I show that neither of the two most popular ways of trying to effect such content assignation -- informational semantics and 'biosemantics' -- can make the required distinction, at least not in a way that a computational neuroscientist should be happy about. The moral of the story as I take it is not a negative one to the effect that computational neuroscience is in principle incapable of doing what it wants to do. Rather, it is to point out some work that remains to be done

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,164

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
390 (#48,578)

6 months
16 (#136,207)

Historical graph of downloads
How can I increase my downloads?