Abstract
By theword problemfor some class of algebraic structures we mean the problem of determining, given a finite setEof equations between words and an additional equationx=y, whetherx=ymust hold in all structures satisfying each member ofE. In 1947 Post [P] showed the word problem for semigroups to be undecidable. This result was strengthened in 1950 by Turing, who showed the word problem to be undecidable forcancellation semigroups,i.e. semigroups satisfying thecancellation propertyNovikov [N] eventually showed the word problem for groups to be undecidable.In 1966 Gurevich [G] showed the word problem to be undecidable forfinitesemigroups. However, this result on finite structures has not been extended to cancellation semigroups or groups; indeed it is easy to see that a finite cancellation semigroup is a group, so both questions are the same. We do not here settle the word problem for finite groups, but we do show that the word problem is undecidable for finite semigroups with zero satisfying an approximation to the cancellation property.