Quantitative Modeling of Tumor Dynamics and Radiotherapy

Acta Biotheoretica 58 (4):341-353 (2010)
Cancer is a complex disease, necessitating research on many different levels; at the subcellular level to identify genes, proteins and signaling pathways associated with the disease; at the cellular level to identify, for example, cell-cell adhesion and communication mechanisms; at the tissue level to investigate disruption of homeostasis and interaction with the tissue of origin or settlement of metastasis; and finally at the systems level to explore its global impact, e.g. through the mechanism of cachexia. Mathematical models have been proposed to identify key mechanisms that underlie dynamics and events at every scale of interest, and increasing effort is now being paid to multi-scale models that bridge the different scales. With more biological data becoming available and with increased interdisciplinary efforts, theoretical models are rendering suitable tools to predict the origin and course of the disease. The ultimate aims of cancer models, however, are to enlighten our concept of the carcinogenesis process and to assist in the designing of treatment protocols that can reduce mortality and improve patient quality of life. Conventional treatment of cancer is surgery combined with radiotherapy or chemotherapy for localized tumors or systemic treatment of advanced cancers, respectively. Although radiation is widely used as treatment, most scheduling is based on empirical knowledge and less on the predictions of sophisticated growth dynamical models of treatment response. Part of the failure to translate modeling research to the clinic may stem from language barriers, exacerbated by often esoteric model renderings with inaccessible parameterization. Here we discuss some ideas for combining tractable dynamical tumor growth models with radiation response models using biologically accessible parameters to provide a more intuitive and exploitable framework for understanding the complexity of radiotherapy treatment and failure.
Keywords Philosophy   Evolutionary Biology   Philosophy of Biology
Categories (categorize this paper)
DOI 10.1007/s10441-010-9111-z
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,422
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

17 ( #268,031 of 1,924,895 )

Recent downloads (6 months)

2 ( #308,473 of 1,924,895 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.