Maximal beable subalgebras of quantum-mechanical observables

International Journal of Theoretical Physics 38:2441-2484 (1999)
  Copy   BIBTEX

Abstract

The centerpiece of Jeffrey Bub's book Interpreting the Quantum World is a theorem (Bub and Clifton 1996) which correlates each member of a large class of no-collapse interpretations with some 'privileged observable'. In particular, the Bub-Clifton theorem determines the unique maximal sublattice L(R,e) of propositions such that (a) elements of L(R,e) can be simultaneously determinate in state e, (b) L(R,e) contains the spectral projections of the privileged observable R, and (c) L(R,e) is picked out by R and e alone. In this paper, we explore the issue of maximal determinate sets of observables using the tools provided by the algebraic approach to quantum theory; and we call the resulting algebras of determinate observables, "maximal *beable* subalgebras". The capstone of our exploration is a generalized version of Bub and Clifton's theorem that applies to arbitrary (i.e., both mixed and pure) quantum states, to Hilbert spaces of arbitrary (i.e., both finite and infinite) dimension, and to arbitrary observables (including those with a continuous spectrum). Moreover, in the special case covered by the original Bub-Clifton theorem, our theorem reproduces their result under strictly weaker assumptions. This added level of generality permits us to treat several topics that were beyond the reach of the original Bub-Clifton result. In particular: (a) We show explicitly that a (non-dynamical) version of the Bohm theory can be obtained by granting privileged status to the position observable. (b) We show that Clifton's (1995) characterization of the Kochen-Dieks modal interpretation is a corollary of our theorem in the special case when the density operator is taken as the privileged observable. (c) We show that the 'uniqueness' demonstrated by Bub and Clifton is only guaranteed in certain special cases -- viz., when the quantum state is pure, or if the privileged observable is compatible with the density operator. We also use our results to articulate a solid mathematical foundation for certain tenets of the orthodox Copenhagen interpretation of quantum theory. For example, the uncertainty principle asserts that there are strict limits on the precision with which we can know, simultaneously, the position and momentum of a quantum-mechanical particle. However, the Copenhagen interpretation of this fact is not simply that a precision momentum measurement necessarily and uncontrollably disturbs the value of position, and vice-versa; but that position and momentum can never in reality be thought of as simultaneously determinate. We provide warrant for this stronger 'indeterminacy principle' by showing that there is no quantum state that assigns a sharp value to both position and momentum; and, a fortiori, that it is mathematically impossible to construct a beable algebra that contains both the position observable and the momentum observable. We also prove a generalized version of the Bub-Clifton theorem that applies to "singular" states (i.e., states that arise from non-countably-additive probability measures, such as Dirac delta functions). This result allows us to provide a mathematically rigorous reconstruction of Bohr's response to the original EPR argument -- which makes use of a singular state. In particular, we show that if the position of the first particle is privileged (e.g., as Bohr would do in a position measuring context), the position of the second particle acquires a definite value by virtue of lying in the corresponding maximal beable subalgebra. But then (by the indeterminacy principle) the momentum of the second particle is not a beable; and EPR's argument for the simultaneous reality of both position and momentum is undercut.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
141 (#128,555)

6 months
22 (#118,559)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Hans Halvorson
Princeton University

Citations of this work

Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (3):417-470.
Copenhagen interpretation of quantum mechanics.Jan Faye - 2008 - Stanford Encyclopedia of Philosophy.
Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.

View all 17 citations / Add more citations

References found in this work

The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
A uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics.Jeffrey Bub & Rob Clifton - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):181-219.

Add more references