Plans and planning in mathematical proofs

Review of Symbolic Logic 14 (4):1030-1065 (2020)
  Copy   BIBTEX

Abstract

In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The starting point is to recognize that to each mathematical proof corresponds a proof activity which consists of a sequence of deductive inferences—i.e., a sequence of epistemic actions—and that any written mathematical proof is only a report of its corresponding proof activity. The main idea to be developed is that the plan of a mathematical proof is to be conceived and analyzed as the plan of the agent(s) who carried out the corresponding proof activity. The core of the paper is thus devoted to the development of an account of plans and planning in the context of proof activities. The account is based on the theory of planning agency developed by Michael Bratman in the philosophy of action. It is fleshed out by providing an analysis of the notions of intention—the elementary components of plans—and practical reasoning—the process by which plans are constructed—in the context of proof activities. These two notions are then used to offer a precise characterization of the desired notion of plan for proof activities. A fruitful connection can then be established between the resulting framework and the recent theme of modularity in mathematics introduced by Jeremy Avigad. This connection is exploited to yield the concept of modular presentations of mathematical proofs which has direct implications for how to write and present mathematical proofs so as to deliver various epistemic benefits. The account is finally compared to the technique of proof planning developed by Alan Bundy and colleagues in the field of automated theorem proving. The paper concludes with some remarks on how the framework can be used to provide an analysis of understanding and explanation in the context of mathematical proofs.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 102,074

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Rationality in Mathematical Proofs.Yacin Hamami & Rebecca Lea Morris - 2023 - Australasian Journal of Philosophy 101 (4):793-808.
Understanding mathematical proof.John Taylor - 2014 - Boca Raton: Taylor & Francis. Edited by Rowan Garnier.
Rigour and Proof.Oliver Tatton-Brown - 2023 - Review of Symbolic Logic 16 (2):480-508.
Socializing Aspects of Proof Procedure.Jaroslaw Mrozek - 2018 - Proceedings of the XXIII World Congress of Philosophy 56:25-31.

Analytics

Added to PP
2020-04-15

Downloads
120 (#182,209)

6 months
15 (#220,452)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Yacin Hamami
ETH Zurich
Rebecca Morris
Independent Scholar

References found in this work

What is inference?Paul Boghossian - 2014 - Philosophical Studies 169 (1):1-18.
Comment on Paul Boghossian, "What is inference".Crispin Wright - 2014 - Philosophical Studies 169 (1):27-37.
Mathematical rigor and proof.Yacin Hamami - 2022 - Review of Symbolic Logic 15 (2):409-449.
Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.

View all 18 references / Add more references