Review of Symbolic Logic:1-40 (forthcoming)
Authors |
|
Abstract |
In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The starting point is to recognize that to each mathematical proof corresponds a proof activity which consists of a sequence of deductive
inferences—i.e., a sequence of epistemic actions—and that any written mathematical proof is only a report of its corresponding proof activity. The main idea to be developed is that the plan of a mathematical proof is to be conceived and analyzed as the plan of the agent(s) who carried out the corresponding proof activity. The core of the paper is thus devoted to the development of an account of plans and planning in the context of proof activities. The account is based on the theory of planning agency developed by Michael Bratman in the philosophy of action. It is fleshed out by providing an analysis of the notions of intention—
the elementary components of plans—and practical reasoning—the process by which plans are constructed—in the context of proof activities. These two notions are then used to offer a precise characterization of the desired notion of plan for proof activities. A fruitful connection can then be established between the resulting framework and the recent theme of modularity in mathematics introduced by Jeremy Avigad. This connection is exploited to yield the
concept of modular presentations of mathematical proofs which has direct implications for how to write and present mathematical proofs so as to deliver various epistemic benefits. The account is finally compared to the technique of proof planning developed by Alan Bundy and colleagues in the field of automated theorem proving. The paper concludes with some remarks on how the framework can be used to provide an analysis of understanding and explanation in the context of mathematical proofs.
|
Keywords | philosophy of mathematics planning agency |
Categories | (categorize this paper) |
DOI | 10.1017/s1755020319000601 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Comment on Paul Boghossian, "What is Inference".Crispin Wright - 2014 - Philosophical Studies 169 (1):27-37.
View all 19 references / Add more references
Citations of this work BETA
Philosophy of Mathematical Practice: A Primer for Mathematics Educators.Yacin Hamami & Rebecca Morris - forthcoming - ZDM Mathematics Education.
Similar books and articles
Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
Automatic Learning of Proof Methods in Proof Planning.Mateja Jamnik, Manfred Kerber, Martin Pollet & Christoph Benzmüller - 2003 - Logic Journal of the IGPL 11 (6):647-673.
Arguing Around Mathematical Proofs.Michel Dufour - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht: Springer. pp. 61-76.
Mathematical Fit: A Case Study.Manya Raman-Sundström & Lars-Daniel Öhman - forthcoming - Philosophia Mathematica:nkw015.
Proofs as Spatio-Temporal Processes.Petros Stefaneas & Ioannis M. Vandoulakis - 2014 - Philosophia Scientae 18:111-125.
Mathematical Rigor, Proof Gap and the Validity of Mathematical Inference.Yacin Hamami - 2014 - Philosophia Scientiae 18 (1):7-26.
Proof Systems for Planning Under Cautious Semantics.Yuping Shen & Xishun Zhao - 2013 - Minds and Machines 23 (1):5-45.
Granularity Analysis for Mathematical Proofs.Marvin R. G. Schiller - 2013 - Topics in Cognitive Science 5 (2):251-269.
Informal Proofs and Mathematical Rigour.Marianna Antonutti Marfori - 2010 - Studia Logica 96 (2):261-272.
Analytics
Added to PP index
2020-04-15
Total views
29 ( #394,172 of 2,505,144 )
Recent downloads (6 months)
9 ( #81,319 of 2,505,144 )
2020-04-15
Total views
29 ( #394,172 of 2,505,144 )
Recent downloads (6 months)
9 ( #81,319 of 2,505,144 )
How can I increase my downloads?
Downloads