Prolegomena to a cognitive investigation of Euclidean diagrammatic reasoning

Authors
Yacin Hamami
Vrije Universiteit Brussel
Abstract
Euclidean diagrammatic reasoning refers to the diagrammatic inferential practice that originated in the geometrical proofs of Euclid’s Elements. A seminal philosophical analysis of this practice by Manders (‘The Euclidean diagram’, 2008) has revealed that a systematic method of reasoning underlies the use of diagrams in Euclid’s proofs, leading in turn to a logical analysis aiming to capture this method formally via proof systems. The central premise of this paper is that our understanding of Euclidean diagrammatic reasoning can be fruitfully advanced by confronting these logical and philosophical analyses with the field of cognitive science. Surprisingly, central aspects of the philosophical and logical analyses resonate in very natural ways with research topics in mathematical cognition, spatial cognition and the psychology of reasoning. The paper develops these connections, concentrating on four issues: (1) the cognitive origins of Euclidean diagrammatic reasoning, (2) the cognitive representations of spatial relations in Euclidean diagrams, (3) the nature of the cognitive processes and cognitive representations involved in Euclidean diagrammatic reasoning seen as a form of visuospatial relational reasoning and (4) the complexity of Euclidean diagrammatic reasoning for the human cognitive system. For each of these issues, our analysis generates concrete experiment proposals, opening thereby the way for further empirical investigations. The paper is thus a prolegomenon to a research program on Euclidean diagrammatic reasoning at the crossroads of logic, philosophy and cognitive science
Keywords Diagrammatic reasoning  Euclidean geometry  Mathematical cognition  Visuospatial relational reasoning  Categorical and coordinate spatial relations  Relational complexity
Categories (categorize this paper)
DOI 10.1007/s10849-013-9182-8
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 38,062
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Perceptual Symbol Systems.Lawrence W. Barsalou - 1999 - Behavioral and Brain Sciences 22 (4):577-660.
Proofs, Pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.

View all 24 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

A Diagrammatic Inference System with Euler Circles.Koji Mineshima, Mitsuhiro Okada & Ryo Takemura - 2012 - Journal of Logic, Language and Information 21 (3):365-391.
On Automating Diagrammatic Proofs of Arithmetic Arguments.Mateja Jamnik, Alan Bundy & Ian Green - 1999 - Journal of Logic, Language and Information 8 (3):297-321.
Renovating Philosophical Practice Through Diagrammatic Reasoning.Rocco Gangle - 2008 - Proceedings of the Xxii World Congress of Philosophy 4:47-52.
The Tinctures and Implicit Quantification Over Worlds.Jay Zeman - 1997 - In Paul Forster & Jacqueline Brunning (eds.), The Rule of Reason: The Philosophy of C.S. Peirce. University of Toronto Press. pp. 96-119.

Analytics

Added to PP index
2014-02-16

Total views
48 ( #141,828 of 2,312,817 )

Recent downloads (6 months)
7 ( #100,543 of 2,312,817 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature