Journal of Symbolic Logic 63 (2):549-554 (1998)
Authors |
|
Abstract |
After small forcing, any $ -closed forcing will destroy the supercompactness and even the strong compactness of κ
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | http://projecteuclid.org/euclid.jsl/1183745518 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Strong Compactness and Other Cardinal Sins.Jussi Ketonen - 1972 - Annals of Mathematical Logic 5 (1):47.
Citations of this work BETA
Destruction or Preservation as You Like It.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
Superstrong and Other Large Cardinals Are Never Laver Indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
Fragility and Indestructibility II.Spencer Unger - 2015 - Annals of Pure and Applied Logic 166 (11):1110-1122.
Strongly Compact Cardinals and the Continuum Function.Arthur W. Apter, Stamatis Dimopoulos & Toshimichi Usuba - 2021 - Annals of Pure and Applied Logic 172 (9):103013.
View all 7 citations / Add more citations
Similar books and articles
Indestructibility and the Level-by-Level Agreement Between Strong Compactness and Supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
Destruction or Preservation as You Like It.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
Strong Cardinals Can Be Fully Laver Indestructible.Arthur W. Apter - 2002 - Mathematical Logic Quarterly 48 (4):499-507.
Laver Indestructibility and the Class of Compact Cardinals.Arthur W. Apter - 1998 - Journal of Symbolic Logic 63 (1):149-157.
Sacks Forcing, Laver Forcing, and Martin's Axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
Laver Sequences for Extendible and Super-Almost-Huge Cardinals.Paul Corazza - 1999 - Journal of Symbolic Logic 64 (3):963-983.
An Equiconsistency for Universal Indestructibility.Arthur W. Apter & Grigor Sargsyan - 2010 - Journal of Symbolic Logic 75 (1):314-322.
Laver Sequences for Extendible and Super-Almost-Huge Cardinals.Paul Corazza - 1999 - Journal of Symbolic Logic 64 (3):963-983.
Forcing Indestructibility of MAD Families.Jörg Brendle & Shunsuke Yatabe - 2005 - Annals of Pure and Applied Logic 132 (2):271-312.
Some Remarks on Indestructibility and Hamkins? Lottery Preparation.Arthur W. Apter - 2003 - Archive for Mathematical Logic 42 (8):717-735.
Universal Indestructibility for Degrees of Supercompactness and Strongly Compact Cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.
Higher Souslin Trees and the Generalized Continuum Hypothesis.John Gregory, Richard Laver, Saharon Shelah, S. Shelah & L. Stanley - 1984 - Journal of Symbolic Logic 49 (2):663-665.
Indestructibility, Measurability, and Degrees of Supercompactness.Arthur W. Apter - 2012 - Mathematical Logic Quarterly 58 (1):75-82.
On Fraïssé's Order Type Conjecture.Richard Laver & Saharon Shelah - 1987 - Journal of Symbolic Logic 52 (2):571-574.
The Lottery Preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
Analytics
Added to PP index
2009-01-28
Total views
52 ( #217,974 of 2,505,786 )
Recent downloads (6 months)
1 ( #416,828 of 2,505,786 )
2009-01-28
Total views
52 ( #217,974 of 2,505,786 )
Recent downloads (6 months)
1 ( #416,828 of 2,505,786 )
How can I increase my downloads?
Downloads