Second-order logic and logicism

Mind 99 (393):91-99 (1990)
  Copy   BIBTEX


Some widely accepted arguments in the philosophy of mathematics are fallacious because they rest on results that are provable only by using assumptions that the con- clusions of these arguments seek to undercut. These results take the form of bicon- ditionals linking statements of logic with statements of mathematics. George Boolos has given an argument of this kind in support of the claim that certain facts about second-order logic support logicism, the view that mathematics—or at least part of it—reduces to logic. Hilary Putnam has offered a similar argument for the view that it is indifferent whether we take mathematics to be about objects or about what follows from certain postulates. In this paper I present and rebut these arguments



    Upload a copy of this work     Papers currently archived: 83,836

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The Contemporary Interest of an Old Doctrine.William Demopoulos - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:209 - 216.
Logicism Revisited.Otávio Bueno - 2001 - Principia 5 (1-2):99-124.
Russell’s reasons for logicism.Ian Proops - 2006 - Journal of the History of Philosophy 44 (2):267-292.
The Fruits of Logicism.Timothy Bays - 2000 - Notre Dame Journal of Formal Logic 41 (4):415-421.
Logicism lite.Richard Jeffrey - 2002 - Philosophy of Science 69 (3):474-496.
Pure Second-Order Logic with Second-Order Identity.Alexander Paseau - 2010 - Notre Dame Journal of Formal Logic 51 (3):351-360.


Added to PP

75 (#179,587)

6 months
1 (#497,632)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

William Hanson
University of Minnesota

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references