Abstract
A recently popular formulation of the Higgs naturalness principle prohibits delicate cancellations between running renormalized Higgs mass parameters and EFT matching corrections, by contrast with the principle’s original formulation, which prohibits delicate cancellations between the bare Higgs mass parameter and its quantum corrections. While the need for this latter cancellation is sometimes viewed as unproblematic since bare parameters are thought by some to be divergent and unphysical, renormalized parameters are finite and measurable, and the need for delicate cancellations between the renormalized Higgs mass parameter and EFT matching corrections is therefore considered by some to constitute a more salient formulation of the Higgs naturalness problem. Here, we argue that to the contrary, the need for fine tuning of the renormalized Higgs mass parameter is an eliminable, unphysical artifact of renormalization scheme, and that this severely weakens the grounds for regarding it as a problematic instance of fine tuning. In doing so, we highlight what we take to be a number of important conceptual lessons about the physical interpretation of model parameters in QFT.