Journal of Symbolic Logic 87 (1):21-46 (2022)
Abstract |
Our main result is that there exist structures which cannot be computably recovered from their tree of tuples. This implies that there are structures with no computable copies which nevertheless cannot code any information in a natural/functorial way.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.1017/jsl.2019.92 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Enumerations in Computable Structure Theory.Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Annals of Pure and Applied Logic 136 (3):219-246.
Coding in Graphs and Linear Orderings.Julia F. Knight, Alexandra A. Soskova & Stefan V. Vatev - 2020 - Journal of Symbolic Logic 85 (2):673-690.
Citations of this work BETA
No citations found.
Similar books and articles
Reverse Mathematics, Computability, and Partitions of Trees.Jennifer Chubb, Jeffry L. Hirst & Timothy H. McNicholl - 2009 - Journal of Symbolic Logic 74 (1):201-215.
Degrees of Convex Dependence in Recursively Enumerable Vector Spaces.Thomas A. Nevins - 1993 - Annals of Pure and Applied Logic 60 (1):31-47.
Set Mappings on $4$ -Tuples. [REVIEW]Shahram Mohsenipour & Saharon Shelah - 2018 - Notre Dame Journal of Formal Logic 59 (3):405-416.
Structure with Fast Elimination of Quantifiers.Mihai Prunescu - 2006 - Journal of Symbolic Logic 71 (1):321 - 328.
Propositions as Interpreted Abstracta.Thomas Hodgson - forthcoming - In Chris Tillman & Adam R. Murray (eds.), The Routledge Handbook of Propositions. Routledge.
Definition 1.1. 1. A Tree is a Subset T of< Such That for All∈ T, If∈< and⊆, Then∈ T. 2. If T is a Tree and S⊆ T is Also a Tree, We Say That S is a Subtree of T. 3. A Tree T is Bounded If There Exists H:→ Such That for All∈ T. [REVIEW]Joseph R. Mileti - 2005 - Bulletin of Symbolic Logic 11 (3).
Gap Structure After Forcing with a Coherent Souslin Tree.Carlos Martinez-Ranero - 2013 - Archive for Mathematical Logic 52 (3-4):435-447.
Borel Functors and Infinitary Interpretations.Matthew Harrison-Trainor, Russell Miller & Antonio Montalbán - 2018 - Journal of Symbolic Logic 83 (4):1434-1456.
On the Existence of Indiscernible Trees.Kota Takeuchi & Akito Tsuboi - 2012 - Annals of Pure and Applied Logic 163 (12):1891-1902.
Model for DNA and Protein Interactions and the Function of the Operator.Alfred Gierer - 1966 - Nature 212:1480-1481.
Computable Functors and Effective Interpretability.Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller & Antonio Montalbán - 2017 - Journal of Symbolic Logic 82 (1):77-97.
Values for Rooted-Tree and Sink-Tree Digraph Games and Sharing a River.Anna B. Khmelnitskaya - 2010 - Theory and Decision 69 (4):657-669.
Fragility and Indestructibility of the Tree Property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.
Some Interesting Connections Between the Slow Growing Hierarchy and the Ackermann Function.Andreas Weiermann - 2001 - Journal of Symbolic Logic 66 (2):609-628.
Intention, Interpretation and the Computational Structure of Language.Matthew Stone - 2004 - Cognitive Science 28 (5):781-809.
Analytics
Added to PP index
2020-09-07
Total views
11 ( #852,621 of 2,507,664 )
Recent downloads (6 months)
2 ( #277,140 of 2,507,664 )
2020-09-07
Total views
11 ( #852,621 of 2,507,664 )
Recent downloads (6 months)
2 ( #277,140 of 2,507,664 )
How can I increase my downloads?
Downloads