Ontologies and worlds in category theory: Implications for neural systems [Book Review]

Axiomathes 16 (1-2):165-214 (2006)
We propose category theory, the mathematical theory of structure, as a vehicle for defining ontologies in an unambiguous language with analytical and constructive features. Specifically, we apply categorical logic and model theory, based upon viewing an ontology as a sub-category of a category of theories expressed in a formal logic. In addition to providing mathematical rigor, this approach has several advantages. It allows the incremental analysis of ontologies by basing them in an interconnected hierarchy of theories, with an operation on the hierarchy that expresses the formation of complex theories from simple theories that express first principles. Another operation forms abstractions expressing the shared concepts in an array of theories. The use of categorical model theory makes possible the incremental analysis of possible worlds, or instances, for the theories, and the mapping of instances of a theory to instances of its more abstract parts. We describe the theoretical approach by applying it to the semantics of neural networks.
Keywords category  cognition  colimit  functor  limit  natural transformation  neural network  semantics
Categories (categorize this paper)
DOI 10.1007/s10516-005-5474-1
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,470
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Michael A. Arbib (1970). Brains, Machines, and Mathematics. Journal of Symbolic Logic 35 (3):482-483.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

47 ( #103,519 of 1,925,583 )

Recent downloads (6 months)

1 ( #418,223 of 1,925,583 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.