Kant on real definitions in geometry
Canadian Journal of Philosophy 44 (5-6):605-630 (2014)
Abstract
This paper gives a contextualized reading of Kant's theory of real definitions in geometry. Though Leibniz, Wolff, Lambert and Kant all believe that definitions in geometry must be ‘real’, they disagree about what a real definition is. These disagreements are made vivid by looking at two of Euclid's definitions. I argue that Kant accepted Euclid's definition of circle and rejected his definition of parallel lines because his conception of mathematics placed uniquely stringent requirements on real definitions in geometry. Leibniz, Wolff and Lambert thus accept definitions that Kant rejects because they assign weaker roles to real definitionsAuthor's Profile
DOI
10.1080/00455091.2014.971689
My notes
Similar books and articles
Two Kinds of Definition in Spinoza's Ethics.Kristina Meshelski - 2011 - British Journal for the History of Philosophy 19 (2):201-218.
Kant's critique of the Leibnizian philosophy : Contra the Leibnizians, but pro Leibniz.Anja Jauernig - 2008 - In Daniel Garber & Béatrice Longuenesse (eds.), Kant and the Early Moderns. Princeton, NJ, USA: Princeton University Press. pp. 41-63 (and 214-223 notes).
Comparing inductive and circular definitions: Parameters, complexity and games.Kai-Uwe Küdhnberger, Benedikt Löwe, Michael Möllerfeld & Philip Welch - 2005 - Studia Logica 81 (1):79 - 98.
What is a definition of emotion? And are emotions mental-behavioral processes?Rainer Reisenzein - 2007 - Social Science Information 7 (3):26-29.
What Real Progress has Metaphysics Made in Germany Since the Time of Leibniz and Wolff?Immanuel Kant - 1983 - Abaris Books.
Real definitions: Quine and Aristotle.José A. Benardete - 1993 - Philosophical Studies 72 (2-3):265 - 282.
Notwendige und zufällige Wahrheiten. Die Summierung unendlicher Reihen im Lichte der Leibnizschen Begriffslogik.Hans Georg Knapp - 1978 - Studia Leibnitiana 10 (1):60 - 86.
Définition, Théorie des Objets et Paraconsistance (Definition, Objects' Theory and Paraconsistance).Newton C. A. da Costa & Jean-Yves Béziau - 1998 - Theoria 13 (2):367-379.
Définition, théorie Des objets et paraconsistance (definition, objects' theory and paraconsistance).Newton C. A. Costa & Jean-Yves Béziau - 1998 - Theoria 13 (2):367-379.
Philosophy, geometry, and logic in Leibniz, Wolff, and the early Kant.Daniel Sutherland - 2010 - In Michael Friedman, Mary Domski & Michael Dickson (eds.), Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Science. Open Court.
Kant's Philosophy of Geometry--On the Road to a Final Assessment.L. Kvasz - 2011 - Philosophia Mathematica 19 (2):139-166.
Analytics
Added to PP
2014-12-05
Downloads
85 (#145,662)
6 months
2 (#298,443)
2014-12-05
Downloads
85 (#145,662)
6 months
2 (#298,443)
Historical graph of downloads
Author's Profile
Citations of this work
Kant on Method.Karl Schafer - forthcoming - In Andrew Stephenson & Anil Gomes (eds.), The Oxford Handbook of Kant. Oxford: Oxford University Press.
Axiomatic Natural Philosophy and the Emergence of Biology as a Science.Hein van den Berg & Boris Demarest - 2020 - Journal of the History of Biology 53 (3):379-422.
Dedekind and Wolffian Deductive Method.José Ferreirós & Abel Lassalle-Casanave - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):345-365.
Kant’s Ideal of Systematicity in Historical Context.Hein van den Berg - 2021 - Kantian Review 26 (2):261-286.
What is Kantian Philosophy of Mathematics? An Overview of Contemporary Studies.Maksim D. Evstigneev - 2021 - Kantian Journal 40 (2):151-178.
References found in this work
Critique of pure reason.Immanuel Kant - 1781/1998 - In Elizabeth Schmidt Radcliffe, Richard McCarty, Fritz Allhoff & Anand Vaidya (eds.), Philosophy and Phenomenological Research. Blackwell. pp. 449-451.
Critique of Pure Reason.Wolfgang Schwarz - 1966 - Philosophy and Phenomenological Research 26 (3):449-451.