Journal of Philosophical Logic 48 (4):685-707 (2019)

Authors
Leon Horsten
Universität Konstanz
Abstract
Inspired by Kit Fine’s theory of arbitrary objects, we explore some ways in which the generic structure of the natural numbers can be presented. Following a suggestion of Saul Kripke’s, we discuss how basic facts and questions about this generic structure can be expressed in the framework of Carnapian quantified modal logic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
ISBN(s)
DOI 10.1007/s10992-018-9490-1
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 64,107
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Modal Logic as Metaphysics.Timothy Williamson - 2013 - Oxford, England: Oxford University Press.
What Numbers Could Not Be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
The Principles of Mathematics Revisited.Jaakko Hintikka - 1996 - Cambridge University Press.
Reasoning with Arbitrary Objects.Kit Fine - 1985 - Oxford and New York: Blackwell.
Dependence and Independence.Erich Grädel & Jouko Väänänen - 2013 - Studia Logica 101 (2):399-410.

View all 18 references / Add more references

Citations of this work BETA

Generic Structures.Leon Horsten - 2019 - Philosophia Mathematica 27 (3):362-380.

Add more citations

Similar books and articles

On the Ordered Dedekind Real Numbers in Toposes.Marcelo E. Coniglio & Luís A. Sbardellini - 2015 - In Edward H. Haeusler, Wagner Sanz & Bruno Lopes (eds.), Why is this a Proof? Festschrift for Luiz Carlos Pereira. College Publications. pp. 87-105.
Generic Structures.Leon Horsten - 2019 - Philosophia Mathematica 27 (3):362-380.
On Arbitrary Sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
Kant and Finitism.W. W. Tait - 2016 - Journal of Philosophy 113 (5/6):261-273.
Carnapian Structuralism.Holger Andreas - 2014 - Erkenntnis 79 (S8):1373-1391.
Why Numbers Are Sets.Eric Steinhart - 2002 - Synthese 133 (3):343-361.
Arbitrary Reference.Wylie Breckenridge & Ofra Magidor - 2012 - Philosophical Studies 158 (3):377-400.
On the Essence and Identity of Numbers.Mario Gómez-Torrente - 2015 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 30 (3):317-329.
An Argument Concerning the Unknowable.Leon Horsten - 2009 - Analysis 69 (2):240-242.
Reference to Numbers in Natural Language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.

Analytics

Added to PP index
2018-10-25

Total views
36 ( #302,466 of 2,454,646 )

Recent downloads (6 months)
3 ( #225,910 of 2,454,646 )

How can I increase my downloads?

Downloads

My notes