Tomohiro Hoshi
Stanford University
The indispensability argument, which claims that science requires beliefs in mathematical entities, gives a strong motivation for mathematical realism. However, mathematical realism bears Benacerrafian ontological and epistemological problems. Although recent accounts of mathematical realism have attempted to cope with these problems, it seems that, at least, a satisfactory account of epistemology of mathematics has not been presented. For instance, Maddy's realism with perceivable sets and Resnik's and Shapiro's structuralism have their own epistemological problems. This fact has been a reason to rebut the indispensability argument and adopt mathematical nominalism. Since mathematical nominalism purports to be committed only to concretia, it seems that mathematical nominalism is epistemically friendlier than mathematical realism. However, when it comes to modal mathematical nominalism, this claim is not trivial. There is a reason for doubting the modal primitives that it invokes. In this thesis, this doubt is investigated through Chihara's Constructibility Theory. Chihara's Constructibility Theory purports not to be committed to abstracta by replacing existential assertions of the standard mathematics with ones of constructibility. However, the epistemological status of the primitives in Chihara's system can be doubted. Chihara might try to argue that the problem would dissolve by using possible world semantics as a didactic device to capture the primitive notions. Nonetheless, his analysis of possible world semantic is not plausible, when considered as a part of the project of nominalizing mathematics in terms of the Constructibility Theory.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 60,826
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

A Wittgensteinian Philosophy of Mathematics.Charles Sayward - 2005 - Logic and Logical Philosophy 15 (2):55-69.
Mathematical Nominalism and Measurement.Davide Rizza - 2010 - Philosophia Mathematica 18 (1):53-73.
Truth and Proof.Otávio Bueno - 2008 - Manuscrito 31 (1):419-440.


Added to PP index

Total views
43 ( #243,043 of 2,438,799 )

Recent downloads (6 months)
1 ( #435,061 of 2,438,799 )

How can I increase my downloads?


My notes