Geometry and Spatial Intuition: A Genetic Approach

Authors
Rene Jagnow
University of Georgia
Abstract
In this thesis, I investigate the nature of geometric knowledge and its relationship to spatial intuition. My goal is to rehabilitate the Kantian view that Euclid's geometry is a mathematical practice, which is grounded in spatial intuition, yet, nevertheless, yields a type of a priori knowledge about the structure of visual space. I argue for this by showing that Euclid's geometry allows us to derive knowledge from idealized visual objects, i.e., idealized diagrams by means of non-formal logical inferences. By developing such an account of Euclid's geometry, I complete the "standard view" that geometry is either a formal system or an empirical science, which was developed mainly by the logical positivists and which is currently accepted by many mathematicians and philosophers. My thesis is divided into three parts. I use Hans Reichenbach's arguments against Kant and Edmund Husserl's genetic approach to the concept of space as a means of arguing that the "standard view" has to be supplemented by a concept of a geometry whose propositions have genuine spatial content. I then develop a coherent interpretation of Euclid's method by investigating both the subject matter of Euclid's geometry and the nature of geometric inferences. In the final part of this thesis, I modify Husserl's phenomenological analysis of the constitution of visual space in order to define a concept of spatial intuition that allows me not only to explain how Euclid's practice is grounded in visual space, but also to account for the apriority of its results.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Reprint years 2002
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 34,925
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Edmund Husserl on the Applicability of Formal Geometry.René Jagnow - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 67-85.
Kant's "Argument From Geometry".Lisa Shabel - 2004 - Journal of the History of Philosophy 42 (2):195-215.
Abstraction and Intuition in Peano's Axiomatizations of Geometry.Davide Rizza - 2009 - History and Philosophy of Logic 30 (4):349-368.
Contemporary Arguments for a Geometry of Visual Experience.Phillip John Meadows - 2011 - European Journal of Philosophy 19 (3):408-430.
Space, Number and Structure: A Tale of Two Debates.Stewart Shapiro - 1996 - Philosophia Mathematica 4 (2):148-173.
Spatial Perception and Geometry in Kant and Helmholtz.Gary Hatfield - 1984 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:569 - 587.

Analytics

Added to PP index
2011-01-07

Total downloads
81 ( #77,982 of 2,272,765 )

Recent downloads (6 months)
3 ( #149,323 of 2,272,765 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature