Abstract
Presurgical chemotherapy is widely used in the treatment of locally advanced breast cancer. Monitoring the response to therapy can improve survival and reduce morbidity. We employ a noninvasive, near-infrared method based on diffuse optical spectroscopy to quantitatively monitor tumor response to neoadjuvant chemotherapy. DOS was used to monitor tumor response in one patient with locally advanced breast cancer throughout the course of her therapy. Measurements were performed prior to doxorubicin-cyclophosphamide therapy and at several time points over the course of three treatment cycles. Our results show strong tumor to normal tissue contrast in total hemoglobin concentration, water fraction, tissue hemoglobin oxygen saturation, S tO 2, and lipid fraction prior to treatment. Over a 10-week period, the peak total hemoglobin and water dropped 56 and 67%, respectively. Lipid content nearly returned to baseline while S tO 2 exceeded pretreatment levels. Approximately half of the hemoglobin and water changes occurred within 5 days of treatment. These data suggest that noninvasive, quantitative optical methods that characterize tumor physiology may be useful in assessing and optimizing individual response to neoadjuvant chemotherapy. © 2004 Society of Photo-Optical Instrumentation Engineers.