Abstract
A small but growing number of studies have aimed to understand, assess and reduce existential risks, or risks that threaten the continued existence of mankind. However, most attention has been focused on known and tangible risks. This paper proposes a heuristic for reducing the risk of black swan extinction events. These events are, as the name suggests, stochastic and unforeseen when they happen. Decision theory based on a fixed model of possible outcomes cannot properly deal with this kind of event. Neither can probabilistic risk analysis. This paper will argue that the approach that is referred to as engineering safety could be applied to reducing the risk from black swan extinction events. It will also propose a conceptual sketch of how such a strategy may be implemented: isolated, self-sufficient, and continuously manned underground refuges. Some characteristics of such refuges are also described, in particular the psychosocial aspects. Furthermore, it is argued that this implementation of the engineering safety strategy safety barriers would be effective and plausible and could reduce the risk of an extinction event in a wide range of possible scenarios. Considering the staggering opportunity cost of an existential catastrophe, such strategies ought to be explored more vigorously