Abstract
Because they contain idealizations, scientific models are often considered to be misrepresentations of their target systems. An important question is therefore how models can explain the behaviours of these systems. Most of the answers to this question are representationalist in nature. Proponents of this view are generally committed to the claim that models are explanatory if they represent their target systems to some degree of accuracy; in other words, they try to determine the conditions under which idealizations can be made without jeopardizing the representational function of models. In this article, we first outline several forms of this representationalist view. We then argue that this view, in each of these forms, omits an important role of idealizations: that of facilitating the identification of the explanatory components within a model. Via examination of a case study from contemporary astrophysics, we show that one way in which idealizations can do this is by creating a comparison case that s...